
Development of Leader Following, Boids Inspired
Algorithm Using Robot Operating System (ROS)

Sami Alperen Akgun
Electrical and Computer Engineering

University of Waterloo
Waterloo, ON, Canada
saakgun@uwaterloo.ca

Abstract—In this paper, boids inspired leader following multi-
robot system was implemented in Stage simulator using Robot
Operating System (ROS). An additional migration part was
added to three main boids rules which are separation, cohesion
and alignment. Quantitative metrics were developed to calculate
multi-robot system’s performance. Experiments were conducted
in simulation to test the proposed system and provide insight
about multi-robot system design.

Index Terms—BOIDS, Reynolds Rules, Multi-Robot Systems,
Leader Following, ROS

I. INTRODUCTION

Multi-robot systems have grown in popularity recently as
they offer parallel execution of a task which often leads to
more efficient solutions than single robot systems [1]. More-
over, one robot equipped with multiple advanced functions
might be expensive to produce while single-functioning robots
are often lower cost and easier to maintain [2].

As the number of robots in a system increases, the coor-
dination of multi-robot systems becomes more difficult. The
most easiest and straightforward way to solve this problem
is by assigning different roles to robots in the group such
as leaders and followers [3]. Depending on the application
and number of the robots, the group can be divided into
subsets and each subset might have a different leader; other
solutions might have only one leader and the rest of the
group can be followers [4]. Furthermore, researchers often
take inspiration from biological systems in order to control
and coordinate multi-robot systems [5]. While many animals
behave independently as an individual within a group, animal
groups move as if there is a central planner which coordinates
individuals in the group [5]. Researcher Craig Reynolds was
the first to implement a set of mathematical rules to model this
kind of behaviour [6]. By programming each individual in the
group (called boids) independently, he managed to obtain very
natural movement of bird flocks.

After successful introduction of Reynolds rules, researchers
have started to use these rules to control robot swarms. Hauert
et al. used boids to create a flock of 10 drones both in sim-
ulation and real world [7], but drones didn’t have separation
capability of boids since they were flying in different attitudes.
Braga et al. implemented a boids inspired algorithm for multi-
rotor UAVs using ROS and tested in both simulation and
reality [8]. However, they didn’t analyze the leader-follower

aspect of it. On the other hand, Carpin and Parker proposed
a leader-follower algorithm for a collaborative multi-robot
system [9]; yet, they used a behaviour based approach to
coordinate a multi-robot system instead of Reynolds rules.
On the other hand, Dunk and Abbass investigated three main
Boids rules using evolutionary computation methods to include
leader-follower behaviour [10]. Nonetheless, they didn’t use
ROS to implement their algorithm, which makes it difficult
to employ in other robotic platforms. Lastly, Barisic and
Krizmancic implemented three basic Boids rules using ROS
and Stage simulator, but they didn’t have any method to
quantify the success of the algorithm [26]. They also didn’t
include leader following behaviour.

In this paper, implementation of Reynolds rules using ROS
and Stage simulator environment was introduced. Leader fol-
lowing behaviour and quantitative measurement methods were
added to implementation provided in [26]. Quantitative metrics
related to leader following behaviour in this paper were a sim-
plified version of the work in [10]. Nonetheless, different from
them, focus of this project was on implementation. The main
motivation behind this work is to provide researchers a multi-
robot system which is capable of navigation and following a
leader naturally in ROS environment. This system later can be
used for person-following applications for multi-robot systems
like [11]. Overview paper [12] can provide more information
about person-following systems for interested readers.

The rest of the paper is organized as follows. In section II,
the methodology is explained in a detailed manner. Section
III explains experiments followed by discussion in Section
IV. Finally, conclusion is made in Section V followed by
limitations and future work in Section VI.

II. METHODOLOGY

A. Reynolds Rules

There are three main boids rules: separation, alignment and
cohesion [6] as shown in Fig. 1.

• Separation: Robots move away from each other to avoid
collisions.

• Alignment: Robots match their heading with other robots
to move like group.

• Cohesion: Robots stay close to each other to form a
group.

Fig. 1. Reynolds Three Main Rules: Separation (Left), Alignment (Center)
and Cohesion (Right) [15]

The three behaviours and leader following behaviour was
first implemented in Python programming language according
to the simple algorithm structures proposed in [13]. In this
way, desired boids algorithm first tested before going into
details related to ROS and Stage simulator. This kind of
approach makes debugging process pretty easier. The Python
algorithm is published as an open source package on Github1.
Related code can also be found in Appendix B. An example
output of this implementation can be seen in Figure 2.

Fig. 2. Boids Python implementation (blue circles are agents)

After successful Python implementation of boids, same
algorithm was implemented in ROS environment. For this pur-
pose, I started with ROS package ”sphero-formation” provided
in [26]. This package was extended with leader following be-
haviour and quantitative metrics to measure success of overall
algorithm. Other missing details were added, and unrelated
scripts were removed. A new ROS package ”boids ros”2 was
created. This is the main repository used in this project.
Related code regarding this package can be found in Appendix
C. Overall design of the package and ROS architecture was
described in the following sections.

1https://github.com/samialperen/boids-python
2https://github.com/samialperen/boids ros

TABLE I
MAIN COMPUTER PROPERTIES

GPU Intel HD Graphics (Coffeelake 3x8 GT2)
CPU Intel i7-8700 CPU @ 3.20GHz × 12
OS Ubuntu 16.04, 64 Bit

RAM 16GB DDR4

Group leader was independent from the rest of the group, so
it was not included in calculations of three main boids rules.
It moves independently in a specific pre-defined trajectory in
order to obtain comparable results for the different cases of
experiment. Rest of the group follows its trajectory thanks to
additional leader following behaviour.

B. Robots and Simulation

In the proposal of the project, using Turtlebot3 robot had
been suggested since it is highly compatible with all dis-
tributions of ROS like Indigo, Kinetic or Melodic. Yet, it
wasn’t preferred in the paper since I realized that starting
with simple robots is more wisely considering computational
power. In addition, Gazebo simulation was considered as a
simulation environment, but after struggling with Gazebo for
a long time, I soon recognized that it is not a good simulation
environment for multi-robot systems. The reason behind this
finding was instantiating multiple robots in Gazebo in a consis-
tent, scalable way is surprisingly challenging due to dynamic
transform frame calculations as highlighted by Brian Bingham,
an Associate Professor in the Department of Mechanical and
Aerospace Engineering at the Naval Postgraduate School in
California [16], [17], [18].

Stage [19], V-REP [20], MORSE [21], Webots [22], US-
ARSim [23] and Unity [24] simulators were considered as
an alternative to Gazebo. Main properties of these simulators
were presented in Table II. Although all the simulations except
Stage provides 3D simulations and state of art rendering
engines, Stage was used in this study since the focus of the
project is on 2D simulation, and it requires less computational
power than others. The main computer used in this project has
the following properties stated in Table I.

As mentioned before three main rules of boids algorithm
with ROS and Stage simulator was implemented in [26]. They
used Sphero SPRK+ robots (Figure 3) in their project. Since
Spheros are simple sphere shaped robots and my focus is on
2D simulation, it was determined to use Sphero SPRK+ robots
in this project too. Nonetheless, thanks to ROS, switching
robots and moving to real world applications is going to be
quite straight-forward. Specific simulation environment used
in this project and ROS visualization tool (Rviz) output can
be seen in Figure 4 and Figure 5.

C. ROS Architecture

All ROS nodes and scripts was explained in this section in
order to give reader a clear understanding of the implementa-
tion.

TABLE II
CHARACTERISTICS OF DIFFERENT ROBOTICS SIMULATORS [25] (AMOUNT OF * SHOWS THE LEVEL OF SUPPORT/COMPATIBILITY)

V-REP Gazebo MORSE Webots USARSim Stage Unity
Main Progr. Language C++ C++ Python C++ C++ C++ C++

Operating System Mac, Linux Mac, Linux BSD, Mac, Linux Linux, Mac Linux Linux Linux
Simulation Type 3D 3D 3D 3D 3D 2D 3D
Physics Engine ODE, Bullet, Vortex, Newton ODE, Bullet, Dart Bullet ODE Unreal OpenGL Unity 3D

3D Rendering Engine Internal, External OGRE Blender game OGRE Karma - OGRE
Portability Yes Yes Yes Yes Yes Yes Yes

Support **** ***** **** **** *** **** **
ROS Compatibility **** ***** **** *** ** **** *

Fig. 3. Sphero SPRK+ Robot [29]

Fig. 4. Simulation environment used to evaluate boids algorithm; leader
robot(red) and followers (blue)

Fig. 5. Rviz output with marker arrays (blue:alignment, green:cohesion,
red:separation and light blue:leader following), (leader is at top right)

When the simulation is started, ROS nodes and topics seen
in Figure 6 appears. The node “simulator” publishes each
robot’s odometry information which contains both their pose
and velocity. This information is used with “tf (transform
frame)” to dynamically update robot’s location. Then, this
update is sent to “map server” which then updates “map”
topic. “dyn reconf” node allows user to change algorithm’s
parameters dynamically in real time as it can be seen in Figure
7.

After boids algorithm is started, ROS graph becomes like in
Figure 8. The node “search” is responsible to calculate relative
pose of neighbor agents for each member of flock including
leader. This information is taken as an input by boids main
node “reynolds controller”. This node sends calculated veloc-
ity to each agent in the group using “cmd vel” message type
(excluding leader). Markers are used for display purposes in
Rviz as mentioned before (see Figure 5). “Leader controller”
node specifies pre-defined trajectory of leader and guarantees
that leader follows that trajectory using a simple feedback
loop. As an alternative to leader controller, optional ROS node
“boids teleop” is developed to allow users to move the leader
via keyboard. In the end, “rosbag record” logs all related data
in a proper ROS format for post analysis.

Fig. 6. ROS nodes and topics when simulation is started

Fig. 7. Dynamic reconfiguration node to change parameters in real time

After all the data had been obtained, “data analyzer” was
called to calculate necessary metrics. Finally, “visualize data”
is responsible to display plots and make statistical analysis
seen in Results section. More information related to ROS
architecture and scripts can be found in Appendix C.

III. EXPERIMENTS

A. Research Questions

Using the methods described in the previous section, the
flocking behaviour of leader and followers was analyzed by
conducting an experiment in Stage simulator. It was expected
to gain more insight about the following research questions:

Research Question 1: How does velocity of leader affect
boids performance?

Research Question 2: What is the relationship between
relative boids parameters and boids performance?

Research Question 3: How does number of agents in the
group affect boids performance?

B. Experimental Procedure
All the experiments were carried on Stage simulator as

described in the previous sections. Overall view of different
cases and (in)dependent variables related to different research
questions can be seen in Table III. Besides, a list of of
controlled variables can be seen in Table IV. To address the

TABLE III
EXPERIMENT CASES, DEPENDENT AND INDEPENDENT VARIABLES

Research Q Case ID Independent Variable Dependent Variable
1 1 leader velocity =

0.5m/s
violation of metrics

1 2 leader velocity =
0.55m/s

violation of metrics

1 3 leader velocity =
0.6m/s

violation of metrics

2 4 leader weight = 1.0 violation of metrics
2 5 leader weight = 1.1 violation of metrics
2 6 leader weight = 1.2 violation of metrics
3 7 group size = 7 total violation amount

of boids rules
3 8 group size = 13 total violation amount

of boids rules
3 9 group size = 19 total violation amount

of boids rules
TABLE IV

CONTROLLED VARIABLES

Variable Name Description Value
separation weight gain of separation 1.0
cohesion weight gain of cohesion 1.0
alignment weight gain of alignment 1.0

horizon radius of each agent’s detection range 1.0
desired separation separation threshold 0.7m
desired cohesion cohesion threshold 2.25m
desired alignment alignment threshold 45◦

agent speed speed of members 0.5m/s

first research question, different leader velocity levels were
compared: the same as followers’ velocity, 10% more than
followers’ velocity and 20% more than followers’ velocity like
in Table III.

Regarding the second research question, leader weight was
varied while keeping other weights constant as it can be seen
in Table III. One can see pseudo code of main boids algorithm
below to understand the logic behind the second part of the
experiment.

d e f ma in bo ids ()
V ec to r v1 , v2 , v3 , v4
Boid b
FOR EACH BOID b

v1 = s e p a r a t i o n (b) * s e p a r a t i o n w e i g h t
v2 = a l i g n m e n t (b) * a l i g n m e n t w e i g h t
v3 = c o h e s i o n (b) * c o h e s i o n w e i g h t
v4 = l e a d e r f o l l o w (b) * l e a d e r w e i g h t
b . v e l o c i t y += v1 + v2 + v3 + v4
b . p o s i t i o n = b . p o s i t i o n + b . v e l o c i t y

end

Fig. 8. ROS nodes and topics after boids algorithm is started

To address last research question, same experimental sce-
nario with different total number of agents were examined.
Due to limitations regarding computational power, experiments
were conducted with either total of 7 agents, 13 agents or 19
agents. Leader was included in the total number of agents.
From implementation perspective, there isn’t any limit for
total number of agents in the flock, but one has to provide
necessary computational power and simulation area for larger
multi-robot systems. For instance, for the specific computer
whose properties were listed in Table I, it was discovered that
total agent limit is around 30.

C. Measures

In order to analyze results, some quantitative metrics
were introduced. There are different metrics for each of the
Reynolds rules, so in the end total of three different metrics
were proposed. All metrics were measured with respect to
leader like in [10].

1) Separation: Each followers’ distance to the leader was
calculated. If any of the followers’ distance (dsep) is closer
than a predefined distance, then the duration of this time
interval (tsep) was logged. Let’s call the number of robots that
violate this distance as nsep and total simulation time as tsim.
Then, the violation of separation (Vsep) can be calculated:

Vsep =
tsep ∗ nsep
tsim

(1)

2) Alignment: Each followers’ heading orientation with
respect to the leader was calculated. If any of the followers’
heading orientation is more than a predefined threshold angle

(θalign), then the duration of this time interval (talign) was
stored with the number of followers that violate the alignment
(nalign). Then, computation for violation of alignment (Valign)
can be made:

Valign =
talign ∗ nalign

tsim
(2)

3) Cohesion: Each followers’ distance to the leader was
calculated. If any of the followers’ distance (dcoh) is more than
a predefined distance, then the duration of this time interval
(tcoh) was logged. Let’s call the number of robots that violate
this distance as ncoh and total simulation time as tsim. Then,
the violation of cohesion (Vcoh) can be calculated:

Vcoh =
tcoh ∗ ncoh

tsim
(3)

Above metrics were calculated for different cases related
to research questions 1 and 2. Having larger values for these
metrics means that boids performance is not high, i.e. low
values of proposed metrics indicates high group performance.
On the other hand, these metrics weren’t calculated for cases
related to last research question since it is obvious that these
metrics will be accumulated as number of agents in the group
increases. Therefore, violation amount of each boids rule was
calculated in a discrete way for each agent. In other words,
time instants in which members of the group violates boids
rules were collected. Only first 6 agent’s collected data was
summed up as a total violation amount for each rule since the
smallest population size is 6 (except leader).

D. Results

The described system was run 45 times in total and ob-
tained results were stored in rosbag files with proper naming
conventions to allow further analysis. For statistical purposes,
simulation was run 5 times for each case in the experiment.
One way ANOVA test [27] was used to check whether there
is a statistical difference between three subgroups related to
each research question. After finding a significant difference,
post-hoc analysis was performed using Tukey’s Honestly
Significant Difference (HSD) test [28]. This has to be done
since ANOVA doesn’t tell which subgroups are significantly
different from each other. Significance level for the tests , i.e.
the threshold to reject null hypothesis, was chosen as 0.05.
An example video which shows the system output during data
collection can be seen in the footnote3.

1) Variation of Leader Velocity: The results in Figure 9
was obtained when leader velocity was varied. Significant
difference was calculated for violation metrics related to all
boids rules. Violation of separation for the leader with 0.5
m/s velocity is significantly higher than the leader with 0.55
m/s and 0.6 m/s (p=0.001). Furthermore, violation of cohesion
for the leader with 0.6 m/s is significantly higher than the case
with leader velocity 0.5 m/s and 0.6m/s (p=0.001). Lastly, all
the violation of alignment values for three cases are different
than each other with p value 0.001.

Fig. 9. Variation of Violation Metrics with Leader Velocity

2) Variation of Leader Weight: Results didn’t show any
significant difference in subgroups with different leader weight
over other boids weights. Related results can be seen in Figure
10.

3) Variation of Number of Agents in the Group: Total sep-
aration violation during entire simulation is higher for group
with 7 population than group with 13 population (p=0.001) and
group with 19 population (p=0.0014). On the other hand, total

3https://www.youtube.com/watch?v=RTcC8k2Nvyw

Fig. 10. Variation of Violation Metrics with Relative Leader Weight

cohesion violation during entire simulation is higher for group
with 19 population than group with 7 population (p=0.001) and
group with 13 population (p=0.0101). Lastly, total alignment
violation during entire simulation for all populations are
different than each other with p value 0.001. Results related
to this case were shown in Figure 11.

Due to space limitations, all results obtained from statistical
tests were not explained here, but they were attached as an
appendix in the end. One can see them in Appendix A.

IV. DISCUSSION

Overall, the following discussions can be made to interpret
the obtained results in light of proposed research questions.
Research question 1 tries to find out the relation between
leader velocity and boids performance. In this regard, a trade-
off was discovered in the results shown in Figure 9. When
leader moves as the same speed with the rest of the group,
violation of separation increases, but violation of cohesion
decreases. On the other hand, if leader goes so fast relative to
rest of the group, although violation of separation decreases,
violation of cohesion increases. This is quite natural because
rest of the group can not catch the leader. Therefore, there
is a trade off between violation of separation and violation
of cohesion. One can not get the perfect metrics for both
separation and cohesion at the same time. Choosing leader
velocity around 10% more than rest of group’s velocity seems
a wise choice to balance violation of separation and violation
of cohesion. This may be also useful for person following
research in HRI since people tend to prefer robots that move
slower than themselves [30].

Second research question tries to examine the effect of
leader weight over other boid weights. However, findings of
the experiment didn’t show any difference as it can be seen in
Figure 10. The reason behind this finding might cause from the
selection of weights. Even 20% difference in relative leader
weight may not be enough to produce any distinction, or it

(a)

(b)

(c)

Fig. 11. Variation of Total Violation Number with Group Population

can be necessary to choose separation, cohesion and alignment
weights numerically less than 1.0 (current selected value) since
they can still be summed up to beat the force caused from
leader weight.

Third research question is to analyze the effect of pop-
ulation size on boids performance. Related results can be
seen in Figure 11. When multi-robot system is composed
of less agents, total separation violation amount is higher.
In contrast, when number of group member is increased,
cohesion violation amount becomes larger in spite of reduction
in separation violation amount. Hence, it can be claimed that
there is a trade-off between separation violation amount and
cohesion violation amount. This should be kept in mind during
the design of multi-robot systems. For example, having a huge
group population to reduce the task completion time might
actually cause an undesirable violation amount in cohesion,
i.e. multi-robots may not form a real group since all agents
tries to move away from each other due to forces produced
by the interaction between them and rest of the group.

On the whole, violation of alignment in Figure 9, 10 and
total alignment violation amount in Figure 11 is higher than
the ones for separation and cohesion. In addition, significant
differences were found between each group related to each
research question regarding alignment. However, all the ob-
tained results related to alignment isn’t actually meaningful.
The reason behind this is the simulation setup. Simulation
environment is 2D and agents are omnidirectional, so they
can move to any direction without restriction. This is a good
feature to allow multi-robot system to move naturally as stated
in [6]. Nonetheless, this causes abrupt changes in forces that
controls alignment, and it becomes difficult to measure this
fashion in a discrete manner and calculate metrics.

The final point of discussion is related to variance of
obtained results. Variance of results were in general high, and
they increase as population size of the group increases. This
was caused from the fact that simulation is stochastic and
combinations of all forces between agents can cause different
situations at each time simulation is run. Although this sounds
negative, in reality it might be useful since real life scenarios
are not deterministic as well.

V. CONCLUSION

In this paper, boids inspired leader following multi-robot
system was implemented using Robot Operating System
(ROS). Quantitative metrics to measure group performance
in multi-robot systems were introduced. Experiments were
conducted in Stage simulator to provide insight about system
parameters and their relation to boids performance. Trade-
off trend was found between varying leader velocity and
separation/cohesion violation. The relation between number
of agents in the group and separation/cohesion violation also
had the same kind of trade-off trend.

Developed ROS architecture can provide researchers a good
basis to work on multi-robot systems. Thanks to modularity
and generalizability of ROS, researchers will be able to
integrate their algorithms easily. Measuring Reynolds flocking

rules quantitatively provides a feasible way to coordinate
multi-robot groups. The decentralized nature of Reynolds rules
makes adding/removing robots to already existing system quite
effortless.

VI. LIMITATIONS & FUTURE WORK

First of all, system is only limited in simulation. In the
future, it will be implemented in the real world by considering
insights gained during this study. Secondly, the obtained re-
sults are highly depend on initial configuration of members in
the group. As a future work, it would be important to analyze
the effect of initial placements of group members on boids
performance. In addition, pre-defined trajectory that leader
followed during the experiments has compelling effect on the
group performance. Thus, it would be interesting to examine
consequences of different trajectories on boids performance.
Lastly, selected robot type (shape, mass, dynamics) might have
affected the results of the project, so it would be nice to
analyze effect of robot type on the results as a future work.

During real world scenarios, leader robots might be replaced
with a human so that this system can be a perfect platform
to study person following behaviours or social navigation for
multi-robot systems from HRI perspective. In this regard, it has
a huge potential to bridge the gap between theory and practice
of multi-robot systems. It is planned to use this implementation
for proxemics research in multi-robot systems in the future.

ACKNOWLEDGMENT

I acknowledge Marko Križmančić’s indirect contribution to
this project for providing well written and documented open
source software repository.4

REFERENCES

[1] Modi, P.J., Shen, W.M., Tambe, M., & Yokoo, M. (2005). ADOPT:
Asynchronous distributed constraint optimization with quality guaran-
tees. Artificial Intelligence, 161(1), 149–180.

[2] Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost
scalable robot system for collective behaviors. In IEEE International
Conference on Robotics and Automation (pp. 3293–3298). IEEE.

[3] Loria, A.; Dasdemir, J.; Jarquin, N.A. Leader-follower formation and
tracking control of mobile robots along straight paths. IEEE Trans.
Control Syst. Technol. 2016, 24, 727–732.

[4] Consolini, L.; Morbidi, F.; Prattichizzo, D.; Tosques, M. Leader-follower
formation control of nonholonomic mobile robots with input constraints.
Automatica 2008, 44, 1343–1349.

[5] Moeslinger, C., Schmickl, T., Crailsheim, K. A minimalist flocking al-
gorithm for swarm robots, European Conference on Artificial Life: 375-
382, 2009.

[6] Reynolds, C. Flocks, herds and schools: A distributed behavioral model,
Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques: 25-34, 1987.

[7] Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey,
J.C., Floreano, D. Reynolds flocking in reality with fixed-wing robots:
communication range vs. maximum turning rate, IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems: 5015-5020, 2011.

[8] R. G. Braga, R. C. da Silva, A. C. Ramos, F. Mora-Camino, Collision
avoidance based on Reynolds rules: A case study using quadrotors, in In-
formation Technology-New Generations (Springer, 2018), pp. 773–780.

[9] S. Carpin and L. E. Parker, “Cooperative leader following in a distributed
multi-robot system,” Proceedings of IEEE International Conference on
Robotics and Automation, 2002.

4https://github.com/mkrizmancic/sphero formation

[10] I. Dunk and H. Abbass, “Emergence of order in leader-follower boids-
inspired systems,” in Computational Intelligence (SSCI), 2016 IEEE
Symposium Series on. IEEE, 2016, pp. 1–8.

[11] Shkurti F, Chang WD, Henderson P, Islam MJ, Higuera JCG, Li J,
Manderson T, Xu A, Dudek G and Sattar J (2017) Underwater Multi-
Robot Convoying using Visual Tracking by Detection. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE.

[12] Islam, M. J., Hong, J., & Sattar, J. (2018b). Person
following by autonomous robots: A categorical overview.
https://arxiv.org/abs/1803.08202

[13] Parker, C. (2007). Boids Pseudocode. [online] Kfish.org. Available at:
http://www.kfish.org/boids/pseudocode.html [Accessed 14 Oct. 2019].

[14] Wiki.ros.org. (2019). rosbag - ROS Wiki. [online] Available at:
http://wiki.ros.org/rosbag [Accessed 14 Oct. 2019].

[15] Red3d.com. (n.d.). Boids, Background and Update. [online] Available
at: https://www.red3d.com/cwr/boids/ [Accessed 16 Nov. 2019].

[16] M. Fahad, Y. Guo, and B. Bingham, “Simulating fine-scale marine
pollution plumes for autonomous robotic environmental monitoring,”
Frontiers Robotics AI, vol. 5, no. MAY, pp. 1–14, 2018.

[17] Bingham, B. (2019). Multi Husky Robot Simulation Wiki. [online]
Available at: https://github.com/bsb808/nre simmultihusky/wiki [Ac-
cessed 17 Nov. 2019].

[18] Bogdon, C. (2019). Simulating Multiple Husky UGVs in Gazebo
- Clearpath Robotics. [online] Clearpath Robotics. Available at:
https://clearpathrobotics.com/blog/2016/03/simulating-multiple-husky-
ugvs-in-gazebo/ [Accessed 17 Nov. 2019].

[19] Player/Stage project. (2016) The Player Project. [Online]. Available:
http://playerstage.sourceforge.net/

[20] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp.
1321–1326.

[21] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. “Modular
open robots simulation engine: MORSE”. In Proceedings of IEEE
International Conference on Robotics and Automation, pp. 46-51, 2011.

[22] O. Michel. “Webots: Symbiosis between virtual and real mobile robots”.
In Proceedings of International Conference on Virtual Worlds, pp. 254-
263, 1998.

[23] S. Carpin, M. Lewis, J. Wang, S. Balakirsky and C. Scrapper. “USAR-
Sim: a robot simulator for research and education”. In Proceedings of
IEEE International Conference on Robotics and Automation, pp. 1400-
1405, 2007.

[24] Y. Hu, and W. Meng. “ROSUnitySim: Development and experimentation
of a real-time simulator for multi-UAV local planning”. Simulation, vol.
92(10), pp. 931-944, 2016.

[25] F. M. Noori, D. Portugal, R. P. Rocha, and M. S. Couceiro, “On 3D
simulators for multi-robot systems in ROS: MORSE or Gazebo?,” SSRR
2017 - 15th IEEE International Symposium on Safety, Security and
Rescue Robotics, Conference, pp. 19–24, 2017.

[26] Barišić, A. and Križmančić, M. (2019). Decentralized formation control
for a multi-agent system of autonomous spherical robots. [online]
GitHub. Available at: https://github.com/mkrizmancic/sphero formation
[Accessed 17 Nov. 2019].

[27] Ostertagova, Eva & Ostertag, Oskar. (2013). Methodology and Applica-
tion of One-way ANOVA. American Journal of Mechanical Engineering.
1. 256-261. 10.12691/ajme-1-7-21.

[28] Salkind, N. J. (2010). Encyclopedia of research design Thousand Oaks,
CA: SAGE Publications, Inc. doi: 10.4135/9781412961288

[29] Harveynorman.com.au. (2019). [online] Available at:
https://www.harveynorman.com.au/sphero-sprk-edition-droid.html
[Accessed 27 Nov. 2019].

[30] J.T. Butler and A. Agah, “Psychological Effects of Behavior Patterns
of a Mobile Personal Robot,” Autonomous Robots, vol. 10, 2001, pp.
185-202.

APPENDIX A
FURTHER RESULTS

Statistical tables obtained by Tukey’s HSD test during the experiment can be found below.

A. Tables Related to First Research Question

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
===

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−−
l e d 0 5 5 s e p l e d 0 5 s e p 6 .8908 0 .001 6 .5176 7 .2639 True
l e d 0 5 5 s e p l e d 0 6 s e p −0.1638 0 .4928 −0.537 0 .2093 F a l s e

l e d 0 5 s e p l e d 0 6 s e p −7.0546 0 .001 −7.4278 −6.6815 True
−−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
==

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−
l ed 055 coh led 05 coh −0.181 0 .3591 −0.5192 0 .1572 F a l s e
l ed 055 coh led 06 coh 2 .0337 0 .001 1 .6954 2 .3719 True

led 05 coh led 06 coh 2 .2147 0 .001 1 .8765 2 .5529 True
−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
==

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−
l e d 0 5 5 a l i g n l e d 0 5 a l i g n 0 .2691 0 .001 0 .1376 0 .4006 True
l e d 0 5 5 a l i g n l e d 0 6 a l i g n 0 .6283 0 .001 0 .4968 0 .7599 True

l e d 0 5 a l i g n l e d 0 6 a l i g n 0 .3592 0 .001 0 .2277 0 .4907 True
−−

B. Tables Related to Second Research Question

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
===

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−−
weigh t 10 sep we igh t 11 sep −0.0754 0 .409 −0.227 0 .0761 F a l s e
we igh t 10 sep we igh t 12 sep −0.1077 0 .182 −0.2593 0 .0438 F a l s e
we igh t 11 sep we igh t 12 sep −0.0323 0 .8309 −0.1839 0 .1193 F a l s e
−−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
===

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−−
weigh t 10 coh weigh t 11 coh −0.0464 0 .6864 −0.1961 0 .1033 F a l s e
weigh t 10 coh weigh t 12 coh −0.0638 0 .5122 −0.2135 0 .0859 F a l s e
weigh t 11 coh weigh t 12 coh −0.0174 0 . 9 −0.1671 0 .1323 F a l s e
−−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
===

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−−
w e i g h t 1 0 a l i g n w e i g h t 1 1 a l i g n −0.0272 0 .8966 −0.1881 0 .1336 F a l s e
w e i g h t 1 0 a l i g n w e i g h t 1 2 a l i g n 0 .024 0 . 9 −0.1369 0 .1848 F a l s e
w e i g h t 1 1 a l i g n w e i g h t 1 2 a l i g n 0 .0512 0 .6736 −0.1097 0 .212 F a l s e
−−−

C. Tables Related to Third Research Question
M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05

===
group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t

−−−
t o t a l 1 3 s e p t o t a l 1 9 s e p 3 . 0 0 . 9 −20.0899 26 .0899 F a l s e
t o t a l 1 3 s e p t o t a l 7 s e p 38 .1333 0 .001 15 .0435 61 .2232 True
t o t a l 1 9 s e p t o t a l 7 s e p 35 .1333 0 .0014 12 .0435 58 .2232 True
−−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
==

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−
t o t a l 1 3 c o h t o t a l 1 9 c o h 35 .9667 0 .0101 7 .2656 64 .6677 True
t o t a l 1 3 c o h t o t a l 7 c o h −19.5667 0 .2406 −48.2677 9 .1344 F a l s e
t o t a l 1 9 c o h t o t a l 7 c o h −55.5333 0 .001 −84.2344 −26.8323 True
−−

M u l t i p l e Comparison of Means − Tukey HSD, FWER=0.05
==

group1 group2 m e a n d i f f p−a d j lower uppe r r e j e c t
−−
t o t a l 1 3 a l i g n t o t a l 1 9 a l i g n 15 .6667 0 .001 6 .6957 24 .6376 True
t o t a l 1 3 a l i g n t o t a l 7 a l i g n −18.7333 0 .001 −27.7043 −9.7624 True
t o t a l 1 9 a l i g n t o t a l 7 a l i g n −34.4 0 .001 −43.371 −25.429 True
−−

APPENDIX B
BOIDS PYTHON IMPLEMENTATION

This appendix contains the code used in boids-python repository5. This repository has two main scripts which are “boids.py”
and “main.py”.

Author: Sami Alperen Akgun

A. boids.py

from p5 i m p o r t c i r c l e , s t r o k e , f i l l
i m p o r t numpy as np
c l a s s Boid (o b j e c t) :
d e f i n i t (s e l f , width , h e i g h t , p o s i t i o n , h o r i z o n , max speed , rule1W , rule2W , rule3W

, d e s i r e d s e p e r a t i o n) :
Width , h e i g h t = Sc re e n Outpu t Dimens ions
x , y = b o i d s p o s i t i o n s
h o r i z o n = I t d e s c r i b e s how f a r bo id can d e t e c t t h e o t h e r s
max speed = Max speed of each i n d i v i d u a l i n t h e group
Rule1 = Cohes ion , Rule2 = S e p e r a t i o n , Rule3= Al ignment
rule1W = Weight f o r t h e r u l e 1 (a s a p e r c e n t a g e) , i . e . rule1W = 5 −−> 5%
d e s i r e d s e p e r a t i o n = Minimum d i s t a n c e between each bo id
s e l f . w id th = wid th
s e l f . h e i g h t = h e i g h t
s e l f . p o s i t i o n = p o s i t i o n
s e l f . max speed = max speed
i n i t i a l r a n d o m v e l o c i t y = (np . random . r and (2) −0 . 5) * s e l f . max speed * 2
s e l f . v e l o c i t y = i n i t i a l r a n d o m v e l o c i t y
s e l f . h o r i z o n = h o r i z o n
s e l f . rule1W = rule1W
s e l f . rule2W = rule2W
s e l f . rule3W = rule3W
s e l f . d e s i r e d s e p e r a t i o n = d e s i r e d s e p e r a t i o n

d e f show boid (s e l f) :
s t r o k e (2 5 5) # w h i t e c o n t o u r c o l o r s
f i l l (0 , 0 , 2 5 5) # f i l l w i th b l u e
c i r c l e ((s e l f . p o s i t i o n [0] , s e l f . p o s i t i o n [1]) , r a d i u s =10)

d e f u p d a t e b o i d (s e l f) :
L i m i t i n g t h e speed
i f np . l i n a l g . norm (s e l f . v e l o c i t y) > s e l f . max speed :

s e l f . v e l o c i t y = (s e l f . v e l o c i t y / np . l i n a l g . norm (s e l f . v e l o c i t y)) * s e l f . max speed
Then u p d a t e t h e p o s i t i o n
s e l f . p o s i t i o n = np . add (s e l f . p o s i t i o n , s e l f . v e l o c i t y)

d e f b o u n d p o s i t i o n (s e l f) :
I f b o i d s r e a c h t h e edges , i t s h o u l d come back from o t h e r s i d e
i f s e l f . p o s i t i o n [0] > s e l f . width −1:

s e l f . p o s i t i o n [0] = 0
e l i f s e l f . p o s i t i o n [1] > s e l f . h e i g h t −1:

s e l f . p o s i t i o n [1] = 0
e l i f s e l f . p o s i t i o n [0] < 0 :

s e l f . p o s i t i o n [0] = s e l f . width−1

5https://github.com/samialperen/boids-python

e l i f s e l f . p o s i t i o n [1] < 0 :
s e l f . p o s i t i o n [1] = s e l f . h e i g h t −1

d e f main boid (s e l f , b o i d s) :
v1 = s e l f . r u l e 1 (b o i d s)
v2 = s e l f . r u l e 2 (b o i d s)
v3 = s e l f . r u l e 3 (b o i d s)

s e l f . b o u n d p o s i t i o n ()
s e l f . show boid ()
s e l f . v e l o c i t y += v1 + v2 + v3
s e l f . u p d a t e b o i d ()

Th i s f u n c t i o n i s used t o move f l o c k t o a d e s i r e d p o s i t i o n
d e s i r e d p o s i t i o n = D e s i r e d t a r g e t p o s i t i o n t o move b o i d s
s t e p s i z e = d e t e r m i n e s how much b o i d s w i l l move t o w a r d s t o d e s i r e d p o s i t i o n
i n each i t e r a t i o n as a p e r c e n t −−> s t e p s i z e = 1 means 1% a t each s t e p
d e f t e n d t o p l a c e (s e l f , d e s i r e d p o s i t i o n , s t e p s i z e) :

s e l f . v e l o c i t y = (d e s i r e d p o s i t i o n − s e l f . p o s i t i o n) * (s t e p s i z e / 100)

d e f r u l e 1 (s e l f , b o i d s) : # Cohes ion
c e n t e r o f m a s s = np . z e r o s (2)
N = 0 # T o t a l bo id number

f o r b i n b o i d s :
s e l f i s t h e bo id we a r e c u r r e n t l y l o o k i n g f o r . We don ’ t want t o t a k e i t s
p o s i t i o n i n t o a c c o u n t f o r c e n t e r o f mass t h a t ’ s why we have t h e e x p r e s s i o n
r i g h t o f &
i f (np . l i n a l g . norm (b . p o s i t i o n − s e l f . p o s i t i o n) < s e l f . h o r i z o n) & (b != s e l f) :

c e n t e r o f m a s s += b . p o s i t i o n
N += 1

c e n t e r o f m a s s = c e n t e r o f m a s s / (N−1)
t a r g e t p o s i t i o n = (c e n t e r o f m a s s * s e l f . rule1W) / 100

r e t u r n t a r g e t p o s i t i o n

d e f r u l e 2 (s e l f , b o i d s) : # S e p e r a t i o n
c = np . z e r o s (2)
f o r b i n b o i d s :

i f ((np . l i n a l g . norm (b . p o s i t i o n − s e l f . p o s i t i o n) < s e l f . h o r i z o n)
& (np . l i n a l g . norm (b . p o s i t i o n − s e l f . p o s i t i o n) < s e l f . d e s i r e d s e p e r a t i o n)
& (b != s e l f)) : # end of c o n d i t i o n

c −= (b . p o s i t i o n − s e l f . p o s i t i o n) * (s e l f . rule2W / 1 0 0) # end of i f

r e t u r n c

d e f r u l e 3 (s e l f , b o i d s) : # Al ignment
p e r c e i v e d v e l o c i t y = np . z e r o s (2)
N = 0 # T o t a l bo id number

f o r b i n b o i d s :
i f (np . l i n a l g . norm (b . p o s i t i o n − s e l f . p o s i t i o n) < s e l f . h o r i z o n) & (b != s e l f) :

p e r c e i v e d v e l o c i t y += b . v e l o c i t y
N += 1

p e r c e i v e d v e l o c i t y = p e r c e i v e d v e l o c i t y / (N−1)
pv = (p e r c e i v e d v e l o c i t y * s e l f . rule3W) / 100

r e t u r n pv

B. main.py

from p5 i m p o r t *
i m p o r t numpy as np
from b o i d s i m p o r t Boid

P a r a m e t e r s f o r v i s u a l i z a t i o n
bg = None
wid th = 800
h e i g h t = 800

P a r a m e t e r s r e g a r d i n g f l o c k s f o r d e s c r i p t i o n look b o i d s . py
h o r i z o n = 100
max speed = 2
rule1W = 100
rule2W = 100
rule3W = 100
d e s i r e d s e p e r a t i o n = 20
d e s i r e d p o s i t i o n = np . a r r a y ([1 0 0 , 6 0 0]) #You can g i v e s t a t i c d e s i r e d p o s i t i o n s
d e s i r e d p o s i t i o n = np . z e r o s (2 , d t y p e =np . i n t 3 2)
s t e p s i z e = 10

C r e a t e f l o c k s
N = 40 # T o t a l number o f b o i d s
f l o c k = [None f o r i n r a n g e (N)]
f o r i i n r a n g e (N) :

i n i t i a l p o s i t i o n = np . z e r o s (2 , d t y p e =np . i n t 3 2)
i n i t i a l p o s i t i o n [0] = np . random . r a n d i n t (0 , width −10) # x c o o r d i n a t e
i n i t i a l p o s i t i o n [1] = np . random . r a n d i n t (0 , h e i g h t −10) # y c o o r d i n a t e
f l o c k [i] = Boid (width , h e i g h t , i n i t i a l p o s i t i o n , h o r i z o n , max speed , rule1W , rule2W ,\

rule3W , d e s i r e d s e p e r a t i o n)

d e f s e t u p () :
g l o b a l bg
s i z e (width , h e i g h t) # Background image i s wid th x h e i g h t
bg = load image (” images / UW background . png ”)

d e f draw () : # Th i s i s t h e main loop f o r p5 l i b r a r y
g l o b a l f l o c k
background (bg)

f o r bo id i n f l o c k :
bo id . t e n d t o p l a c e (d e s i r e d p o s i t i o n , s t e p s i z e)
bo id . main boid (f l o c k)

When you c l i c k t h e mouse on t h e o u t p u t , d e s i r e d p o s i t i o n
becomes t h e c u r s o r p o s i t i o n
d e f mouse pres sed () :

p r i n t (” D e s i r e d l o c a t i o n : %d,%d ” %(mouse x , mouse y))

d e s i r e d p o s i t i o n = np . a r r a y ([mouse x , mouse y])

run () # Th i s i s t h e main f u n c t i o n o f p5 l i b r a r y t h a t c a l l s s e t u p once and draw i n loop

APPENDIX C
BOIDS ROS IMPLEMENTATION

The repository named “boids-ros”6 was created on top of the repository “sphero-formation”7 provided by Marko Križmančić.
In this appendix, only related part of the code will be explained indicating authors and modifications.

All scripts names in boids-ros repository and their functions with authors can be found in the table V. Script names with *
are the ones that I actually contributed considerably to original code. One can also see the actual code below as attached.

TABLE V
SUBMODULES IN BOIDS-ROS REPOSITORY

Script Name Authors Explanation
boids.py* Marko Križmančić, rewritten by Sami Alperen Akgun main boids algorithm

boids teleop.py Sami Alperen Akgun Allow users to control leader via keyboard
data analyzer.py Sami Alperen Akgun Calculates performance metrics
visualize data.py Sami Alperen Akgun Creates graphs using data and make statistical analysis

dynamic reconfiguration node.py Marko Križmančić, modified by Sami Alperen Akgun Allows dynamic change of boids parameters
leader controller.py Sami Alperen Akgun Moves leader in a pre-defined trajectory
nearest search.py* Marko Križmančić, modified by Sami Alperen Akgun Publishes ROS topics for neighbor agents

reynolds controller.py Marko Križmančić, modified by Sami Alperen Akgun Controls boids movements through ROS
simulation tf.py Marko Križmančić transform frame calculation across agents

util.py Marko Križmančić, modified by Sami Alperen Akgun contains utility and helper functions
setup sim.launch Marko Križmančić, modified by Sami Alperen Akgun starts simulation with proper configuration

reynolds sim.launch Marko Križmančić, modified by Sami Alperen Akgun runs boids algorithm with all nodes

CODE WRITTEN ONLY BY ME:

A. boids teleop.py

#!/usr/bin/env python

from __future__ import print_function

import rospy, roslib

from geometry_msgs.msg import Twist

import sys, select, termios, tty

msg = """
Reading from the keyboard and Publishing to Twist!

Moving around:

q w e
a s d
z x c

For Holonomic mode (strafing), hold down the shift key:

U I O
J K L
M < >

6https://github.com/samialperen/boids ros
7https://github.com/mkrizmancic/sphero formation

t : up (+z)
b : down (-z)

anything else : stop

i/k : increase/decrease max speeds by 10%
u/j : increase/decrease only linear speed by 10%
o/l : increase/decrease only angular speed by 10%

CTRL-C to quit
"""

moveBindings = {
’w’:(1,0,0,0),
’e’:(1,0,0,-1),
’a’:(0,0,0,1),
’d’:(0,0,0,-1),
’q’:(1,0,0,1),
’x’:(-1,0,0,0),
’c’:(-1,0,0,1),
’z’:(-1,0,0,-1),
’E’:(1,-1,0,0),
’W’:(1,0,0,0),
’A’:(0,1,0,0),
’D’:(0,-1,0,0),
’Q’:(1,1,0,0),
’X’:(-1,0,0,0),
’C’:(-1,-1,0,0),
’Z’:(-1,1,0,0),
’t’:(0,0,1,0),
’b’:(0,0,-1,0),

}

speedBindings={
’i’:(1.1,1.1),
’k’:(.9,.9),
’u’:(1.1,1),
’j’:(.9,1),
’o’:(1,1.1),
’l’:(1,.9),

}

def getKey():
tty.setraw(sys.stdin.fileno())
select.select([sys.stdin], [], [], 0)
key = sys.stdin.read(1)
termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
return key

def vels(speed,turn):
return "currently:\tspeed %s\tturn %s " % (speed,turn)

if __name__=="__main__":
settings = termios.tcgetattr(sys.stdin)

pub = rospy.Publisher(’robot_0/cmd_vel’, Twist, queue_size = 1)
rospy.init_node(’boids_teleop’)

speed = rospy.get_param("˜speed", 0.5)
turn = rospy.get_param("˜turn", 1.0)
x = 0
y = 0
z = 0
th = 0
status = 0

try:
print(msg)
print(vels(speed,turn))
while(1):

key = getKey()
if key in moveBindings.keys():

x = moveBindings[key][0]
y = moveBindings[key][1]
z = moveBindings[key][2]
th = moveBindings[key][3]

elif key in speedBindings.keys():
speed = speed * speedBindings[key][0]
turn = turn * speedBindings[key][1]

print(vels(speed,turn))
if (status == 14):

print(msg)
status = (status + 1) % 15

else:
x = 0
y = 0
z = 0
th = 0
if (key == ’\x03’):

break

twist = Twist()
twist.linear.x = x*speed; twist.linear.y = y*speed; twist.linear.z = z*speed;
twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = th*turn
pub.publish(twist)

except Exception as e:
print(e)

finally:
twist = Twist()
twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0
pub.publish(twist)

termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

B. data analyzer.py

"""

This python script reads all agents odometry and velocity from bag files
and calculates necessary metrics to quantify boids algorithm.
"""

import rosbag
import rospy
import numpy as np
import pandas as pd
import sys #for parser

This function is used to measure euclidian distance between pd dataframes
def get_distance(a, b):

a, b --> pandas dataframes, inputs
output --> difference panda dataframe which contains
eucledian distances for all times
distance = pd.DataFrame(columns=[’distance’,’t’])
distance[’t’] = a[’t’]
x_dif_square = np.square(a[’x’]-b[’x’])
y_dif_square = np.square(a[’y’]-b[’y’])
distance[’distance’] = np.sqrt(x_dif_square + y_dif_square)
return distance

This function returns |a-b|
def get_abs_difference(a, b):

a, b --> pandas dataframes, inputs
output --> |a-b|

difference = pd.DataFrame(columns=[’angle’,’t’])
difference[’t’] = a[’t’]
difference[’angle’] = abs(a[’angle’]-b[’angle’])
return difference

#################### Parameters ###
separation_threshold = 0.7 #in meters
alignment_threshold = 45.0 # degree
cohesion_threshold = 2.25 #meter
#total_num_of_robots = rospy.get_param("/num_of_robots")
total_num_of_robots = 19

#################### Read Bag File ######################################
bagname = sys.argv[1]
bag = rosbag.Bag(’../bagfiles/’ + bagname + ’.bag’) #Read bag

############## General parameters obtained from rosbag
The data between start_time and end_time will be analyzed
start_time = bag.get_start_time()
end_time = bag.get_end_time()
total_time = end_time - start_time

topics = bag.get_type_and_topic_info()[1].keys() #All topics in rosbag

############## Read poses
Read leader pose --> for our case only pose.x and pose.y is enough (2D)

df_leader_poses = pd.DataFrame(columns=[’x’,’y’,’t’])
leader_counter = 0
for _ , msg, t in bag.read_messages("/robot_0/odom"):

df_leader_poses.loc[leader_counter] = [msg.pose.pose.position.x, msg.pose.pose.
↪→ position.y, t.to_sec()]

leader_counter += 1

Remove duplicate time instants and take last one of them as a true value
df_leader_poses.drop_duplicates(subset=’t’, keep = ’last’, inplace = True)
df_leader_poses = df_leader_poses.reset_index(drop=True)

Total number of pose msgs leader published, this will be used to synchorize boids
leader_pose_msg_size = df_leader_poses.shape[0]

boids_poses = {} # Dictionary for all boids poses through time
Example: boids[1] contains all poses for robot_1
boids[total_num_of_robots] contains all poses for robot_total_num_of_robots
for robot_idx in range(1,total_num_of_robots): #start from robot_1

boids_poses[robot_idx] = pd.DataFrame(columns=[’x’,’y’,’t’])
row_idx = 0
for topic , msg, t in bag.read_messages("/robot_" + str(robot_idx) + "/odom"):

boids_poses[robot_idx].loc[row_idx] = [msg.pose.pose.position.x, msg.pose.
↪→ pose.position.y

, t.to_sec()]
row_idx += 1

for robot_idx in range(1,total_num_of_robots):
Remove duplicate time instants and take last one of them as a true value
boids_poses[robot_idx].drop_duplicates(subset=’t’, keep = ’last’, inplace = True)
boids_poses[robot_idx] = boids_poses[robot_idx].reset_index(drop=True)
min_pose_robot_index = 0 # leader
min_pose_msg_size = leader_pose_msg_size
if boids_poses[robot_idx].shape[0] < min_pose_msg_size:

min_pose_msg_size = boids_poses[robot_idx].shape[0]
min_pose_robot_index = robot_idx

Data Check
#print("################ POSE DATA CHECK ############")
#print(df_leader_poses.shape)
#print(boids_poses[1].shape)
#print(boids_poses[2].shape)
#print(boids_poses[3].shape)
#print(boids_poses[4].shape)
#print(boids_poses[5].shape)
#print(boids_poses[6].shape)
#print(boids_poses[7].shape)
#print(boids_poses[8].shape)
#print(boids_poses[9].shape)
#print(boids_poses[10].shape)
#print(boids_poses[11].shape)
#print(boids_poses[12].shape)

This part is to make sure that all obtained data is synchorized

for robot_idx in range(1,total_num_of_robots):
if boids_poses[robot_idx].shape[0] > min_pose_msg_size:

d = boids_poses[robot_idx].shape[0] - min_pose_msg_size #number of rows to
↪→ delete

for _ in range(d):
if min_pose_robot_index == 0: #leader has the smallest size

if boids_poses[robot_idx][’t’][0] != df_leader_poses[’t’][0]:
We are deleting first row
boids_poses[robot_idx] = boids_poses[robot_idx].iloc[1:,].reset_index(

↪→ drop=True)
else:

We need to delete last row
boids_poses[robot_idx] = boids_poses[robot_idx][:-1]

else: # some agent other than leader has the smallest size
if boids_poses[robot_idx][’t’][0] != boids_poses[min_pose_robot_index][’t’

↪→][0]:
We are deleting first row
boids_poses[robot_idx] = boids_poses[robot_idx].iloc[1:,].reset_index(

↪→ drop=True)
else:

We need to delete last row
boids_poses[robot_idx] = boids_poses[robot_idx][:-1]

if min_pose_robot_index != 0: #leader doesn’t have the smallest size
d = df_leader_poses.shape[0] - min_pose_msg_size #number of rows to delete
for _ in range(d):

if df_leader_poses[’t’][0] != boids_poses[min_pose_robot_index][’t’][0]:
We are deleting first row
df_leader_poses = df_leader_poses.iloc[1:,].reset_index(drop=True)

else:
We need to delete last row
df_leader_poses = df_leader_poses[:-1]

############## Read orientations
Read leader orientation --> Since it is 2D, we need to subscribe cmd_vel
arctan(cmd_vel.linear.y / cmd_vel.linear.x) will give the orientation, i.e. angle
df_leader_angles = pd.DataFrame(columns=[’angle’,’t’])
leader_counter = 0
for _ , msg, t in bag.read_messages("/robot_0/cmd_vel"):

df_leader_angles.loc[leader_counter] = [np.degrees(np.arctan2(msg.linear.y,msg.
↪→ linear.x))

, t.to_sec()]
leader_counter += 1

Remove duplicate time instants and take last one of them as a true value
df_leader_angles.drop_duplicates(subset=’t’, keep = ’last’, inplace = True)
df_leader_angles = df_leader_angles.reset_index(drop=True)

Total number of orientation msgs leader published, this will be used to synchorize
↪→ boids

leader_angle_msg_size = df_leader_angles.shape[0]

boids_angles = {} # Dictionary for all boids angles through time
Example: boids[1] contains all angles for robot_1
boids[total_num_of_robots] contains all angles for robot_total_num_of_robots

for robot_idx in range(1,total_num_of_robots): #start from robot_1
boids_angles[robot_idx] = pd.DataFrame(columns=[’angle’,’t’])
row_idx = 0
for topic , msg, t in bag.read_messages("/robot_" + str(robot_idx) + "/cmd_vel"):

boids_angles[robot_idx].loc[row_idx] = [np.degrees(np.arctan2(msg.linear.y,
↪→ msg.linear.x))

, t.to_sec()]
row_idx += 1

for robot_idx in range(1,total_num_of_robots):
Remove duplicate time instants and take last one of them as a true value
boids_angles[robot_idx].drop_duplicates(subset=’t’, keep = ’last’, inplace = True)
boids_angles[robot_idx] = boids_angles[robot_idx].reset_index(drop=True)
min_angle_robot_index = 0 #leader
min_angle_msg_size = leader_angle_msg_size
if boids_angles[robot_idx].shape[0] < min_angle_msg_size:

min_angle_msg_size = boids_angles[robot_idx].shape[0]
min_angle_robot_index = robot_idx

Data Check
#print("################ ANGLE DATA CHECK ############")
#print(df_leader_angles.shape)
#print(boids_angles[1].shape)
#print(boids_angles[2].shape)
#print(boids_angles[3].shape)
#print(boids_angles[4].shape)
#print(boids_angles[5].shape)
#print(boids_angles[6].shape)
#print(boids_angles[7].shape)
#print(boids_angles[8].shape)
#print(boids_angles[9].shape)
#print(boids_angles[10].shape)
#print(boids_angles[11].shape)
#print(boids_angles[12].shape)

This part is to make sure that all obtained data is synchorized
for robot_idx in range(1,total_num_of_robots):

if boids_angles[robot_idx].shape[0] > min_angle_msg_size:
d = boids_angles[robot_idx].shape[0] - min_angle_msg_size #number of rows to

↪→ delete
for _ in range(d):

if min_angle_robot_index == 0: #leader has the smallest size
if boids_angles[robot_idx][’t’][0] != df_leader_angles[’t’][0]:

We are deleting first row
boids_angles[robot_idx] = boids_angles[robot_idx].iloc[1:,].reset_index

↪→ (drop=True)
else:

We need to delete last row
boids_angles[robot_idx] = boids_angles[robot_idx][:-1]

else: # some agent other than leader has the smallest size
if boids_angles[robot_idx][’t’][0] != boids_angles[min_angle_robot_index][

↪→ ’t’][0]:
We are deleting first row
boids_angles[robot_idx] = boids_angles[robot_idx].iloc[1:,].reset_index

↪→ (drop=True)

else:
We need to delete last row
boids_angles[robot_idx] = boids_angles[robot_idx][:-1]

if min_angle_robot_index != 0: #leader doesn’t have the smallest size
d = df_leader_angles.shape[0] - min_angle_msg_size #number of rows to delete
for _ in range(d):

if df_leader_angles[’t’][0] != boids_angles[min_angle_robot_index][’t’][0]:
We are deleting first row
df_leader_angles = df_leader_angles.iloc[1:,].reset_index(drop=True)

else:
We need to delete last row
df_leader_angles = df_leader_angles[:-1]

#################### Calculate Metrics ######################################

Calculate relative distance to leader for each robot for all the time
boids_rel2leader_poses = {} # Dictionary for all boids distances to leader
E.g. boids_rel2leader[2] will contain distance of robot_2 to leader for all the

↪→ times
boids_rel2leader[2] structure will be an pd dataframe with columns--> distance and t
for robot_idx in range(1,total_num_of_robots):

boids_rel2leader_poses[robot_idx] = get_distance(df_leader_poses, boids_poses[
↪→ robot_idx])

print("#########Robot Poses %d" %(robot_idx))
print(boids_rel2leader_poses[robot_idx])

Calculate relative angles to leader for each robot for all the time
boids_rel2leader_angles = {} # Dictionary for all boids angles relative to leader
E.g. boids_rel2leader[2] will contain distance of robot_2 to leader for all the

↪→ times
boids_rel2leader[2] structure will be an pd dataframe with columns--> distance and t
for robot_idx in range(1,total_num_of_robots):

boids_rel2leader_angles[robot_idx] = get_abs_difference(df_leader_angles,
↪→ boids_angles[robot_idx])

print("#########Robot Angles %d" %(robot_idx))
print(boids_rel2leader_angles[robot_idx])

Separation Metric
Q_sep_nominator = 0.0
for robot_idx in range(1,total_num_of_robots):

t_sep = 0.0 #for each boid we are calculating separately
total_sep_violation = 0 #Number of time instants one boid violates seperation
seperation_check = boids_rel2leader_poses[robot_idx][’distance’] <

↪→ separation_threshold
total_sep_violation = boids_rel2leader_poses[robot_idx][’t’][seperation_check].

↪→ shape[0]
print("Seperation violation: %d" %(total_sep_violation))

if total_sep_violation != 0:
t_sep = total_sep_violation * 0.1 #There is 0.1 time difference between time

↪→ instants
Q_sep_nominator += t_sep

Q_sep = Q_sep_nominator / total_time #violation of seperation

Cohesion Metric
Q_coh_nominator = 0.0
for robot_idx in range(1,total_num_of_robots):

t_coh = 0.0 #for each boid we are calculating separately
total_coh_violation = 0 #number of time instants one boid violates cohesion
cohesion_check = boids_rel2leader_poses[robot_idx][’distance’] > cohesion_threshold
total_coh_violation = boids_rel2leader_poses[robot_idx][’t’][cohesion_check].shape

↪→ [0]
print("Cohesion violation: %d" %(total_coh_violation))
if total_coh_violation != 0:

t_coh = total_coh_violation * 0.1 #There is 0.1 time difference between time
↪→ instants

Q_coh_nominator += t_coh

Q_coh = Q_coh_nominator / total_time #violation of seperation

Alignment Metric
Q_alig_nominator = 0.0
for robot_idx in range(1,total_num_of_robots):

t_alig = 0.0 #for each boid we are calculating separately
total_alig_violation = 0 #number of time instants one boid violates cohesion
alignment_check = boids_rel2leader_angles[robot_idx][’angle’] > alignment_threshold
total_alig_violation = boids_rel2leader_angles[robot_idx][’t’][alignment_check].

↪→ shape[0]
print("Alignment violation: %d" %(total_alig_violation))
if total_alig_violation != 0:

t_alig = total_alig_violation * 0.1 #There is 0.1 time difference between time
↪→ instants

Q_alig_nominator += t_alig

Q_alig = Q_alig_nominator / total_time #violation of seperation

print("Q_sep: %f" %(Q_sep))
print("Q_coh: %f" %(Q_coh))
print("Q_alig: %f" %(Q_alig))

#pd.set_option(’display.max_rows’, 1000)
bag.close()

C. visualize data.py

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats

import pandas as pd
from statsmodels.stats.multicomp import (pairwise_tukeyhsd,MultiComparison)

"""
Research Question 1 --> Relation between metrics and leader speed
Controlled Variables: separation threshold = 0.7m , cohesion threshold = 2.25m,
alignment threshold = 45 degree, total number of robots = 13, delay = 1.8s
all boids weights (4 of them) are 1.0
Independent variable: leader velocity 0.5 or 0.55 or 0.6 m/s
"""
led_05_sep = [7.418773, 6.908654, 6.589588, 6.962874, 7.393245]
led_05_coh = [0.105897, 0.176683, 0.181598, 0.101796, 0.108565]
led_05_align = [2.547533, 2.451923, 2.340194, 2.402395, 2.572979]

led_055_sep = [0.174263, 0.052209, 0.395442, 0.0, 0.197315]
led_055_coh = [0.225201, 0.360107, 0.222520, 0.538255, 0.233557]
led_055_align = [2.076408, 2.228916, 2.268097, 2.249664, 2.146309]

led_06_sep = [0.0, 0.0, 0.0, 0.0, 0.0]
led_06_coh = [2.441691, 1.906841, 2.676385, 2.150146, 2.572886]
led_06_align = [2.864431, 2.799127, 2.750729, 2.857143, 2.839650]

bar_width = 0.25

set height of bar
bars_sep = [np.mean(led_05_sep),np.mean(led_055_sep),np.mean(led_06_sep)]
bars_coh = [np.mean(led_05_coh),np.mean(led_055_coh),np.mean(led_06_coh)]
bars_align = [np.mean(led_05_align),np.mean(led_055_align),np.mean(led_06_align)]

set standard deviation of data for error bars
sep_std = [np.std(led_05_sep), np.std(led_055_sep), np.std(led_06_sep)]
coh_std = [np.std(led_05_coh), np.std(led_055_coh), np.std(led_06_coh)]
align_std = [np.std(led_05_align), np.std(led_055_align), np.std(led_06_align)]

Debug
print("Separation:")
print(bars_sep)
print("Cohesion:")
print(bars_coh)
print("Alignment:")
print(bars_align)

Set position of bar on X axis
r1 = np.arange(len(bars_sep))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

Make the plot
plt.bar(r1, bars_sep, yerr=sep_std, error_kw=dict(lw=3, capsize=5, capthick=2), color=

↪→ ’#7f6d5f’, width=bar_width, edgecolor=’white’, label=’seperation’)
plt.bar(r2, bars_coh, yerr=coh_std, error_kw=dict(lw=3, capsize=5, capthick=2), color=

↪→ ’#557f2d’, width=bar_width, edgecolor=’white’, label=’cohesion’)
plt.bar(r3, bars_align, yerr=align_std, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#2d7f5e’, width=bar_width, edgecolor=’white’, label=’alignment’)

Add xticks on the middle of the group bars
plt.xlabel(’Leader Velocity (m/s)’, fontweight=’bold’)
plt.ylabel(’Violation Metrics’, fontweight=’bold’)
plt.xticks([r + bar_width for r in range(len(bars_sep))], [’0.5’,’0.55’,’0.6’])
plt.title(’Relationship between Leader Velocity and Violation Metrics’)
Create legend & Show graphic
plt.legend()
#plt.savefig(’leader_velocity.png’)
plt.show()

One way ANOVA analysis for statistical analysis
fvalue_sep, pvalue_sep = stats.f_oneway(led_05_sep,led_055_sep,led_06_sep)
fvalue_coh, pvalue_coh = stats.f_oneway(led_05_coh,led_055_coh,led_06_coh)
fvalue_align, pvalue_align = stats.f_oneway(led_05_align,led_055_align,led_06_align)
print("Research Question 1 --> Seperation F and P Value:")
print(fvalue_sep,pvalue_sep)
print("Research Question 1 --> Cohesion F and P Value:")
print(fvalue_coh,pvalue_coh)
print("Research Question 1 --> Alignment F and P Value:")
print(fvalue_align,pvalue_align)

If pvalue < 0.05 --> Apply Tukey’s Multi-Comparison Method to
find out between which subgroups there is a significant difference

df1 = pd.DataFrame()
df1[’led_05_sep’] = led_05_sep
df1[’led_055_sep’] = led_055_sep
df1[’led_06_sep’] = led_06_sep

df2 = pd.DataFrame()
df2[’led_05_coh’] = led_05_coh
df2[’led_055_coh’] = led_055_coh
df2[’led_06_coh’] = led_06_coh

df3 = pd.DataFrame()
df3[’led_05_align’] = led_05_align
df3[’led_055_align’] = led_055_align
df3[’led_06_align’] = led_06_align

Stack the data (and rename columns):
stacked_data1 = df1.stack().reset_index()
stacked_data1 = stacked_data1.rename(columns={’level_0’: ’index’,

’level_1’: ’seperation’,
0:’violation metric’})

stacked_data2 = df2.stack().reset_index()
stacked_data2 = stacked_data2.rename(columns={’level_0’: ’index’,

’level_1’: ’cohesion’,
0:’violation metric’})

stacked_data3 = df3.stack().reset_index()
stacked_data3 = stacked_data3.rename(columns={’level_0’: ’index’,

’level_1’: ’alignment’,
0:’violation metric’})

#print(stacked_data1)

MultiComp1 = MultiComparison(stacked_data1[’violation metric’],stacked_data1[’
↪→ seperation’])

MultiComp2 = MultiComparison(stacked_data2[’violation metric’],stacked_data2[’cohesion
↪→ ’])

MultiComp3 = MultiComparison(stacked_data3[’violation metric’],stacked_data3[’
↪→ alignment’])

#print(MultiComp1.tukeyhsd().summary())
statistic_txt = open("statistical_test4.txt","w")
statistic_txt.write(str(MultiComp1.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp2.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp3.tukeyhsd().summary()))
statistic_txt.write("\n")
#statistic_txt.close() #to change file access modes
"""
Research Question 2 --> Relation between metrics and leader weight metric/other

↪→ metrics
Controlled Variables: separation threshold = 0.7m , cohesion threshold = 2.25m,
alignment threshold = 45 degree, total number of robots = 13, delay = 1.8s
leader_velocity = 0.55 m/s
separation_weight = 1.0 , cohesion_weight = 1.0 and alignment_weight = 1.0
Independent variable: leader_weight = 1.0 or 1.1 or 1.2
"""
weight_10_sep = [0.174263, 0.052209, 0.395442, 0.0, 0.197315]
weight_10_coh = [0.225201, 0.360107, 0.222520, 0.538255, 0.233557]
weight_10_align = [2.076408, 2.228916, 2.268097, 2.249664, 2.146309]

weight_11_sep = [0.099063, 0.113788, 0.080429, 0.053619, 0.095174]
weight_11_coh = [0.313253, 0.195448, 0.276139, 0.237265, 0.325737]
weight_11_align = [2.275770, 2.099063, 2.298928, 2.095174, 2.064343]

weight_12_sep = [0.058981, 0.041287, 0.044177, 0.065684, 0.070415]
weight_12_coh = [0.317694, 0.197051, 0.239625, 0.241287, 0.265060]
weight_12_align = [2.353887, 2.148794, 2.167336, 2.147453, 2.271754]

bar_width = 0.25

set height of bar
bars_sep2 = [np.mean(weight_10_sep),np.mean(weight_11_sep),np.mean(weight_12_sep)]
bars_coh2 = [np.mean(weight_10_coh),np.mean(weight_11_coh),np.mean(weight_12_coh)]
bars_align2 = [np.mean(weight_10_align),np.mean(weight_11_align),np.mean(

↪→ weight_12_align)]

set standard deviation of data for error bars
sep_std2 = [np.std(weight_10_sep), np.std(weight_11_sep), np.std(weight_12_sep)]
coh_std2 = [np.std(weight_10_coh), np.std(weight_11_coh), np.std(weight_12_coh)]
align_std2 = [np.std(weight_10_align), np.std(weight_11_align), np.std(weight_12_align

↪→)]

Debug
print("Separation:")
print(bars_sep2)
print("Cohesion:")

print(bars_coh2)
print("Alignment:")
print(bars_align2)

Set position of bar on X axis
r1 = np.arange(len(bars_sep2))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

Make the plot
plt.bar(r1, bars_sep2, yerr=sep_std2, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#7f6d5f’, width=bar_width, edgecolor=’white’, label=’seperation’)
plt.bar(r2, bars_coh2, yerr=coh_std2, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#557f2d’, width=bar_width, edgecolor=’white’, label=’cohesion’)
plt.bar(r3, bars_align2, yerr=align_std2, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#2d7f5e’, width=bar_width, edgecolor=’white’, label=’alignment’)

Add xticks on the middle of the group bars
plt.xlabel(’Leader Weight over Other Boids Weights’, fontweight=’bold’)
plt.ylabel(’Violation Metrics’, fontweight=’bold’)
plt.xticks([r + bar_width for r in range(len(bars_sep2))], [’1.0’,’1.1’,’1.2’])
plt.title(’Relationship Between Relative Leader Weight and Violation Metrics’)
Create legend & Show graphic
plt.legend(loc=2, prop={’size’: 8})
#plt.savefig(’leader_weight.png’)
plt.show()

One way ANOVA analysis for statistical analysis
fvalue_sep2, pvalue_sep2 = stats.f_oneway(weight_10_sep,weight_11_sep,weight_12_sep)
fvalue_coh2, pvalue_coh2 = stats.f_oneway(weight_10_coh,weight_11_coh,weight_12_coh)
fvalue_align2, pvalue_align2 = stats.f_oneway(weight_10_align,weight_11_align,

↪→ weight_12_align)
print("Research Question 2 --> Seperation F and P Value:")
print(fvalue_sep2,pvalue_sep2)
print("Research Question 2 --> Cohesion F and P Value:")
print(fvalue_coh2,pvalue_coh2)
print("Research Question 2 --> Alignment F and P Value:")
print(fvalue_align2,pvalue_align2)

If pvalue < 0.05 --> Apply Tukey’s Multi-Comparison Method to
find out between which subgroups there is a significant difference

df4 = pd.DataFrame()
df4[’weight_10_sep’] = weight_10_sep
df4[’weight_11_sep’] = weight_11_sep
df4[’weight_12_sep’] = weight_12_sep

df5 = pd.DataFrame()
df5[’weight_10_coh’] = weight_10_coh
df5[’weight_11_coh’] = weight_11_coh
df5[’weight_12_coh’] = weight_12_coh

df6 = pd.DataFrame()
df6[’weight_10_align’] = weight_10_align
df6[’weight_11_align’] = weight_11_align

df6[’weight_12_align’] = weight_12_align

Stack the data (and rename columns):
stacked_data4 = df4.stack().reset_index()
stacked_data4 = stacked_data4.rename(columns={’level_0’: ’index’,

’level_1’: ’seperation’,
0:’violation metric’})

stacked_data5 = df5.stack().reset_index()
stacked_data5 = stacked_data5.rename(columns={’level_0’: ’index’,

’level_1’: ’cohesion’,
0:’violation metric’})

stacked_data6 = df6.stack().reset_index()
stacked_data6 = stacked_data6.rename(columns={’level_0’: ’index’,

’level_1’: ’alignment’,
0:’violation metric’})

#print(stacked_data1)
MultiComp4 = MultiComparison(stacked_data4[’violation metric’],stacked_data4[’

↪→ seperation’])
MultiComp5 = MultiComparison(stacked_data5[’violation metric’],stacked_data5[’cohesion

↪→ ’])
MultiComp6 = MultiComparison(stacked_data6[’violation metric’],stacked_data6[’

↪→ alignment’])

statistic_txt.write(str(MultiComp4.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp5.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp6.tukeyhsd().summary()))
statistic_txt.write("\n")
#statistic_txt.close() #to change file access modes
"""
Research Question 3 --> Relation between violation count and total number of agents
Controlled Variables: separation threshold = 0.7m , cohesion threshold = 2.25m,
alignment threshold = 45 degree, delay = 1.8s, leader_velocity = 0.55 m/s
separation_weight = 1.0 , cohesion_weight = 1.0, alignment_weight = 1.0
leader_weight = 1.0
Independent variable: total number of robots = 7 or 13 or 19
"""

total_7_sep_robot1 = [0, 0, 0, 0, 0]
total_7_sep_robot2 = [37, 83, 15, 23, 10]
total_7_sep_robot3 = [47, 69, 62, 44, 56]
total_7_sep_robot4 = [0, 20, 14, 5, 0]
total_7_sep_robot5 = [33, 92, 47, 60, 46]
total_7_sep_robot6 = [50, 226, 89, 215, 79]

total_7_coh_robot1 = [0, 0, 0, 0, 0]
total_7_coh_robot2 = [0, 0, 0, 0, 0]
total_7_coh_robot3 = [0, 0, 0, 0, 0]
total_7_coh_robot4 = [0, 0, 0, 0, 0]
total_7_coh_robot5 = [0, 0, 0, 0, 0]
total_7_coh_robot6 = [0, 0, 0, 0, 0]

total_7_align_robot1 = [120, 121, 118, 121, 123]

total_7_align_robot2 = [120, 115, 119, 120, 120]
total_7_align_robot3 = [116, 112, 116, 116, 115]
total_7_align_robot4 = [117, 121, 116, 124, 124]
total_7_align_robot5 = [118, 118, 117, 116, 116]
total_7_align_robot6 = [116, 118, 118, 117, 117]

bar_width = 0.25

set height of bar
bars_sep3 = [np.mean(total_7_sep_robot1),np.mean(total_7_sep_robot2),np.mean(

↪→ total_7_sep_robot3),
np.mean(total_7_sep_robot4), np.mean(total_7_sep_robot5), np.mean(

↪→ total_7_sep_robot6)]

bars_coh3 = [np.mean(total_7_coh_robot1),np.mean(total_7_coh_robot2),np.mean(
↪→ total_7_coh_robot3),

np.mean(total_7_coh_robot4), np.mean(total_7_coh_robot5), np.mean(
↪→ total_7_coh_robot6)]

bars_align3 = [np.mean(total_7_align_robot1),np.mean(total_7_align_robot2),np.mean(
↪→ total_7_align_robot3),

np.mean(total_7_align_robot4), np.mean(total_7_align_robot5), np.mean(
↪→ total_7_align_robot6)]

set standard deviation of data for error bars
sep_std3 = [np.std(total_7_sep_robot1), np.std(total_7_sep_robot2), np.std(

↪→ total_7_sep_robot3),
np.std(total_7_sep_robot4), np.std(total_7_sep_robot5), np.std(

↪→ total_7_sep_robot6)]

coh_std3 = [np.std(total_7_coh_robot1), np.std(total_7_coh_robot2), np.std(
↪→ total_7_coh_robot3),

np.std(total_7_coh_robot4), np.std(total_7_coh_robot5), np.std(
↪→ total_7_coh_robot6)]

align_std3 = [np.std(total_7_align_robot1), np.std(total_7_align_robot2), np.std(
↪→ total_7_align_robot3),

np.std(total_7_align_robot4), np.std(total_7_align_robot5), np.std(
↪→ total_7_align_robot6)]

Set position of bar on X axis
r1 = np.arange(len(bars_sep3))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

Make the plot
plt.bar(r1, bars_sep3, yerr=sep_std3, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#7f6d5f’, width=bar_width, edgecolor=’white’, label=’seperation’)
plt.bar(r2, bars_coh3, yerr=coh_std3, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#557f2d’, width=bar_width, edgecolor=’white’, label=’cohesion’)
plt.bar(r3, bars_align3, yerr=align_std3, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#2d7f5e’, width=bar_width, edgecolor=’white’, label=’alignment’)

Add xticks on the middle of the group bars

plt.xlabel(’Robots’, fontweight=’bold’)
plt.ylabel(’Total Violation Amount During Entire Simulation’, fontweight=’bold’)
plt.xticks([r + bar_width for r in range(len(bars_sep3))], [’Robot1’,’Robot2’,’Robot3’

↪→ ,’Robot4’,’Robot5’,’Robot6’])
plt.title(’Total Violation Amounts for Simulation with 7 Robots’)
Create legend & Show graphic
x1,x2,y1,y2 = plt.axis()
plt.axis((x1,x2,0,y2))
plt.legend(loc=9) #(loc=2, prop={’size’: 8})
#plt.savefig(’7robots.png’)
plt.show()

#####################################
total_13_sep_robot1 = [0, 0, 0, 0, 0]
total_13_sep_robot2 = [14, 0, 0, 0, 0]
total_13_sep_robot3 = [0, 0, 25, 0, 0]
total_13_sep_robot4 = [0, 0, 0, 0, 0]
total_13_sep_robot5 = [24, 16, 25, 0, 24]
total_13_sep_robot6 = [27, 12, 86, 0, 25]
total_13_sep_robot7 = [0, 0, 0, 0, 0]
total_13_sep_robot8 = [0, 0, 27, 0, 0]
total_13_sep_robot9 = [0, 0, 0, 0, 0]
total_13_sep_robot10 = [0, 0, 59, 0, 0]
total_13_sep_robot11 = [15, 0, 50, 0, 0]
total_13_sep_robot12 = [50, 11, 23, 0, 98]

total_13_coh_robot1 = [0, 0, 0, 0, 0]
total_13_coh_robot2 = [0, 0, 0, 0, 0]
total_13_coh_robot3 = [0, 0, 0, 0, 0]
total_13_coh_robot4 = [0, 0, 0, 0, 0]
total_13_coh_robot5 = [31, 61, 32, 67, 32]
total_13_coh_robot6 = [70, 71, 65, 88, 70]
total_13_coh_robot7 = [0, 0, 0, 0, 0]
total_13_coh_robot8 = [0, 0, 0, 0, 0]
total_13_coh_robot9 = [0, 0, 0, 19, 0]
total_13_coh_robot10 = [0, 0, 0, 60, 0]
total_13_coh_robot11 = [0, 64, 0, 86, 30]
total_13_coh_robot12 = [67, 73, 69, 81, 42]

total_13_align_robot1 = [107, 124, 152, 136, 129]
total_13_align_robot2 = [105, 125, 157, 107, 129]
total_13_align_robot3 = [159, 158, 168, 153, 139]
total_13_align_robot4 = [136, 155, 157, 167, 137]
total_13_align_robot5 = [127, 127, 128, 128, 133]
total_13_align_robot6 = [135, 136, 121, 134, 138]
total_13_align_robot7 = [111, 128, 128, 128, 130]
total_13_align_robot8 = [108, 129, 127, 126, 129]
total_13_align_robot9 = [164, 171, 171, 174, 131]
total_13_align_robot10 = [133, 151, 115, 137, 138]
total_13_align_robot11 = [132, 130, 137, 153, 134]
total_13_align_robot12 = [132, 131, 131, 153, 132]

bar_width = 0.25

set height of bar

bars_sep4 = [np.mean(total_13_sep_robot1),np.mean(total_13_sep_robot2),np.mean(
↪→ total_13_sep_robot3),

np.mean(total_13_sep_robot4), np.mean(total_13_sep_robot5), np.mean(
↪→ total_13_sep_robot6)]

bars_coh4 = [np.mean(total_13_coh_robot1),np.mean(total_13_coh_robot2),np.mean(
↪→ total_13_coh_robot3),

np.mean(total_13_coh_robot4), np.mean(total_13_coh_robot5), np.mean(
↪→ total_13_coh_robot6)]

bars_align4 = [np.mean(total_13_align_robot1),np.mean(total_13_align_robot2),np.mean(
↪→ total_13_align_robot3),

np.mean(total_13_align_robot4), np.mean(total_13_align_robot5), np.mean(
↪→ total_13_align_robot6)]

set standard deviation of data for error bars
sep_std4 = [np.std(total_13_sep_robot1), np.std(total_13_sep_robot2), np.std(

↪→ total_13_sep_robot3),
np.std(total_13_sep_robot4), np.std(total_13_sep_robot5), np.std(

↪→ total_13_sep_robot6)]

coh_std4 = [np.std(total_13_coh_robot1), np.std(total_13_coh_robot2), np.std(
↪→ total_13_coh_robot3),

np.std(total_13_coh_robot4), np.std(total_13_coh_robot5), np.std(
↪→ total_13_coh_robot6)]

align_std4 = [np.std(total_13_align_robot1), np.std(total_13_align_robot2), np.std(
↪→ total_13_align_robot3),

np.std(total_13_align_robot4), np.std(total_13_align_robot5), np.std(
↪→ total_13_align_robot6)]

Set position of bar on X axis
r1 = np.arange(len(bars_sep4))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

Make the plot
plt.bar(r1, bars_sep4, yerr=sep_std4, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#7f6d5f’, width=bar_width, edgecolor=’white’, label=’seperation’)
plt.bar(r2, bars_coh4, yerr=coh_std4, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#557f2d’, width=bar_width, edgecolor=’white’, label=’cohesion’)
plt.bar(r3, bars_align4, yerr=align_std4, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#2d7f5e’, width=bar_width, edgecolor=’white’, label=’alignment’)

Add xticks on the middle of the group bars
plt.xlabel(’Robots’, fontweight=’bold’)
plt.ylabel(’Total Violation Amount During Entire Simulation’, fontweight=’bold’)
plt.xticks([r + bar_width for r in range(len(bars_sep3))], [’Robot1’,’Robot2’,’Robot3’

↪→ ,’Robot4’,’Robot5’,’Robot6’])
plt.title(’Total Violation Amounts for Simulation with 13 Robots’)
Create legend & Show graphic
x1,x2,y1,y2 = plt.axis()
plt.axis((x1,x2,0,y2))
plt.legend() #(loc=2, prop={’size’: 8})
#plt.savefig(’13robots.png’)

plt.show()

####################################
total_19_sep_robot1 = [0, 0, 0, 0, 0]
total_19_sep_robot2 = [0, 0, 0, 0, 130]
total_19_sep_robot3 = [0, 0, 0, 0, 0]
total_19_sep_robot4 = [0, 0, 0, 0, 69]
total_19_sep_robot5 = [14, 10, 19, 9, 64]
total_19_sep_robot6 = [0, 0, 0, 35, 18]
total_19_sep_robot7 = [0, 0, 0, 0, 119]
total_19_sep_robot8 = [0, 177, 0, 8, 100]
total_19_sep_robot9 = [0, 0, 0, 0, 0]
total_19_sep_robot10 = [0, 200, 0, 0, 57]
total_19_sep_robot11 = [0, 0, 0, 0, 0]
total_19_sep_robot12 = [9, 0, 0, 12, 5]
total_19_sep_robot13 = [0, 0, 0, 30, 4]
total_19_sep_robot14 = [0, 0, 0, 0, 0]
total_19_sep_robot15 = [0, 0, 0, 43, 0]
total_19_sep_robot16 = [0, 0, 0, 27, 0]
total_19_sep_robot17 = [18, 46, 31, 40, 22]
total_19_sep_robot18 = [0, 140, 0, 64, 64]

total_19_coh_robot1 = [187, 0, 226, 0, 0]
total_19_coh_robot2 = [0, 0, 47, 0, 0]
total_19_coh_robot3 = [17, 8, 19, 6, 9]
total_19_coh_robot4 = [28, 30, 53, 51, 0]
total_19_coh_robot5 = [64, 64, 72, 64, 0]
total_19_coh_robot6 = [269, 74, 229, 75, 74]
total_19_coh_robot7 = [177, 0, 186, 0, 0]
total_19_coh_robot8 = [0, 0, 0, 0, 0]
total_19_coh_robot9 = [175, 21, 191, 0, 0]
total_19_coh_robot10 = [53, 0, 16, 30, 0]
total_19_coh_robot11 = [278, 70, 232, 68, 68]
total_19_coh_robot12 = [82, 85, 87, 82, 83]
total_19_coh_robot13 = [216, 0, 128, 0, 0]
total_19_coh_robot14 = [187, 0, 238, 0, 0]
total_19_coh_robot15 = [159, 73, 165, 66, 71]
total_19_coh_robot16 = [221, 75, 243, 69, 73]
total_19_coh_robot17 = [81, 80, 85, 79, 81]
total_19_coh_robot18 = [154, 142, 151, 95, 112]

total_19_align_robot1 = [137, 140, 151, 128, 143]
total_19_align_robot2 = [137, 148, 152, 141, 137]
total_19_align_robot3 = [143, 175, 148, 112, 182]
total_19_align_robot4 = [175, 179, 174, 177, 165]
total_19_align_robot5 = [143, 149, 136, 165, 168]
total_19_align_robot6 = [146, 193, 145, 143, 145]
total_19_align_robot7 = [138, 144, 140, 115, 164]
total_19_align_robot8 = [135, 156, 166, 137, 131]
total_19_align_robot9 = [172, 178, 167, 180, 173]
total_19_align_robot10 = [166, 141, 160, 182, 175]
total_19_align_robot11 = [141, 139, 186, 118, 141]
total_19_align_robot12 = [141, 142, 142, 119, 141]
total_19_align_robot13 = [147, 136, 134, 143, 166]
total_19_align_robot14 = [143, 133, 176, 159, 140]
total_19_align_robot15 = [189, 164, 190, 153, 166]

total_19_align_robot16 = [169, 154, 158, 145, 150]
total_19_align_robot17 = [189, 166, 202, 142, 145]
total_19_align_robot18 = [147, 140, 189, 141, 142]

bar_width = 0.25

set height of bar
bars_sep5 = [np.mean(total_19_sep_robot1),np.mean(total_19_sep_robot2),np.mean(

↪→ total_19_sep_robot3),
np.mean(total_19_sep_robot4), np.mean(total_19_sep_robot5), np.mean(

↪→ total_19_sep_robot6)]

bars_coh5 = [np.mean(total_19_coh_robot1),np.mean(total_19_coh_robot2),np.mean(
↪→ total_19_coh_robot3),

np.mean(total_19_coh_robot4), np.mean(total_19_coh_robot5), np.mean(
↪→ total_19_coh_robot6)]

bars_align5 = [np.mean(total_19_align_robot1),np.mean(total_19_align_robot2),np.mean(
↪→ total_19_align_robot3),

np.mean(total_19_align_robot4), np.mean(total_19_align_robot5), np.mean(
↪→ total_19_align_robot6)]

set standard deviation of data for error bars
sep_std5 = [np.std(total_19_sep_robot1), np.std(total_19_sep_robot2), np.std(

↪→ total_19_sep_robot3),
np.std(total_19_sep_robot4), np.std(total_19_sep_robot5), np.std(

↪→ total_19_sep_robot6)]

coh_std5 = [np.std(total_19_coh_robot1), np.std(total_19_coh_robot2), np.std(
↪→ total_19_coh_robot3),

np.std(total_19_coh_robot4), np.std(total_19_coh_robot5), np.std(
↪→ total_19_coh_robot6)]

align_std5 = [np.std(total_19_align_robot1), np.std(total_19_align_robot2), np.std(
↪→ total_19_align_robot3),

np.std(total_19_align_robot4), np.std(total_19_align_robot5), np.std(
↪→ total_19_align_robot6)]

Set position of bar on X axis
r1 = np.arange(len(bars_sep5))
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]

Make the plot
plt.bar(r1, bars_sep5, yerr=sep_std5, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#7f6d5f’, width=bar_width, edgecolor=’white’, label=’seperation’)
plt.bar(r2, bars_coh5, yerr=coh_std5, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#557f2d’, width=bar_width, edgecolor=’white’, label=’cohesion’)
plt.bar(r3, bars_align5, yerr=align_std5, error_kw=dict(lw=3, capsize=5, capthick=2),

↪→ color=’#2d7f5e’, width=bar_width, edgecolor=’white’, label=’alignment’)

Add xticks on the middle of the group bars
plt.xlabel(’Robots’, fontweight=’bold’)
plt.ylabel(’Total Violation Amount During Entire Simulation’, fontweight=’bold’)

plt.xticks([r + bar_width for r in range(len(bars_sep5))], [’Robot1’,’Robot2’,’Robot3’
↪→ ,’Robot4’,’Robot5’,’Robot6’])

plt.title(’Total Violation Amounts for Simulation with 19 Robots’)
Create legend & Show graphic
x1,x2,y1,y2 = plt.axis()
plt.axis((x1,x2,0,y2))
plt.legend() #(loc=2, prop={’size’: 8})
#plt.savefig(’19robots.png’)
plt.show()

One way ANOVA analysis for statistical analysis
total_7_sep = (total_7_sep_robot1 + total_7_sep_robot2 + total_7_sep_robot3 +

total_7_sep_robot4 + total_7_sep_robot5 + total_7_sep_robot6)
total_7_coh = (total_7_coh_robot1 + total_7_coh_robot2 + total_7_coh_robot3 +

total_7_coh_robot4 + total_7_coh_robot5 + total_7_coh_robot6)
total_7_align = (total_7_align_robot1 + total_7_align_robot2 + total_7_align_robot3 +

total_7_align_robot4 + total_7_align_robot5 + total_7_align_robot6)

total_13_sep = (total_13_sep_robot1 + total_13_sep_robot2 + total_13_sep_robot3 +
total_13_sep_robot4 + total_13_sep_robot5 + total_13_sep_robot6)

total_13_coh = (total_13_coh_robot1 + total_13_coh_robot2 + total_13_coh_robot3 +
total_13_coh_robot4 + total_13_coh_robot5 + total_13_coh_robot6)

total_13_align = (total_13_align_robot1 + total_13_align_robot2 +
↪→ total_13_align_robot3 +

total_13_align_robot4 + total_13_align_robot5 + total_13_align_robot6)

total_19_sep = (total_19_sep_robot1 + total_19_sep_robot2 + total_19_sep_robot3 +
total_19_sep_robot4 + total_19_sep_robot5 + total_19_sep_robot6)

total_19_coh = (total_19_coh_robot1 + total_19_coh_robot2 + total_19_coh_robot3 +
total_19_coh_robot4 + total_19_coh_robot5 + total_19_coh_robot6)

total_19_align = (total_19_align_robot1 + total_19_align_robot2 +
↪→ total_19_align_robot3 +

total_19_align_robot4 + total_19_align_robot5 + total_19_align_robot6)

fvalue_sep3, pvalue_sep3 = stats.f_oneway(total_7_sep,total_13_sep,total_19_sep)
fvalue_coh3, pvalue_coh3 = stats.f_oneway(total_7_coh,total_13_coh,total_19_coh)
fvalue_align3, pvalue_align3 = stats.f_oneway(total_7_align,total_13_align,

↪→ total_19_align)
print("Research Question 3 --> Seperation F and P Value:")
print(fvalue_sep3,pvalue_sep3)
print("Research Question 3 --> Cohesion F and P Value:")
print(fvalue_coh3,pvalue_coh3)
print("Research Question 3 --> Alignment F and P Value:")
print(fvalue_align3,pvalue_align3)

If pvalue < 0.05 --> Apply Tukey’s Multi-Comparison Method to
find out between which subgroups there is a significant difference

df7 = pd.DataFrame()
df7[’total_7_sep’] = total_7_sep
df7[’total_13_sep’] = total_13_sep
df7[’total_19_sep’] = total_19_sep

df8 = pd.DataFrame()
df8[’total_7_coh’] = total_7_coh
df8[’total_13_coh’] = total_13_coh
df8[’total_19_coh’] = total_19_coh

df9 = pd.DataFrame()
df9[’total_7_align’] = total_7_align
df9[’total_13_align’] = total_13_align
df9[’total_19_align’] = total_19_align

Stack the data (and rename columns):
stacked_data7 = df7.stack().reset_index()
stacked_data7 = stacked_data7.rename(columns={’level_0’: ’index’,

’level_1’: ’seperation’,
0:’total violation’})

stacked_data8 = df8.stack().reset_index()
stacked_data8 = stacked_data8.rename(columns={’level_0’: ’index’,

’level_1’: ’cohesion’,
0:’total violation’})

stacked_data9 = df9.stack().reset_index()
stacked_data9 = stacked_data9.rename(columns={’level_0’: ’index’,

’level_1’: ’alignment’,
0:’total violation’})

#print(stacked_data1)
MultiComp7 = MultiComparison(stacked_data7[’total violation’],stacked_data7[’

↪→ seperation’])
MultiComp8 = MultiComparison(stacked_data8[’total violation’],stacked_data8[’cohesion’

↪→])
MultiComp9 = MultiComparison(stacked_data9[’total violation’],stacked_data9[’alignment

↪→ ’])

statistic_txt.write(str(MultiComp7.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp8.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.write(str(MultiComp9.tukeyhsd().summary()))
statistic_txt.write("\n")
statistic_txt.close() #to change file access modes

D. leader controller.py

#!/usr/bin/env python
import rospy
from geometry_msgs.msg import Twist, Pose
from nav_msgs.msg import Odometry

from math import pow, atan2, sqrt

class Leader:

def __init__(self):
self.velocity_publisher = rospy.Publisher(’/robot_0/cmd_vel’, Twist, queue_size

↪→ =10)

rospy.init_node(’leader_controller’, anonymous=True)
self.odom_subscriber = rospy.Subscriber(’/robot_0/odom’, Odometry, self.

↪→ update_leader_pose)

#self.speed = rospy.get_param("/dyn_reconf/max_speed")
self.pose = Pose()
self.rate = rospy.Rate(10)

def update_leader_pose(self,data):
self.pose = data.pose.pose

def calculate_distance(self, goal_pose):
return sqrt(pow((goal_pose.position.x - self.pose.position.x), 2)

+ pow((goal_pose.position.y - self.pose.position.y), 2))

def linear_vel(self, goal_pose):
Kp_lin = 1.5
return Kp_lin * self.calculate_distance(goal_pose)

def steering_angle(self, goal_pose):
return atan2(goal_pose.position.y - self.pose.position.y,

goal_pose.position.x - self.pose.position.x)

def angular_vel(self, goal_pose):
Kp_ang = 6
current_angle = atan2(self.pose.position.y,self.pose.position.x)
return Kp_ang * (self.steering_angle(goal_pose) - current_angle)

def go_desired_pose(self,desired_pose):
target_pose = Pose()
target_pose.position.x = 0.0 #desired_pose.position.x
target_pose.position.y = 3.0 #desired_pose.position.y

error_margin = 0.1
vel_msg = Twist()
while self.calculate_distance(target_pose) >= error_margin:

vel_msg.linear.x = self.linear_vel(target_pose)
vel_msg.linear.y = 0
vel_msg.linear.z = 0

vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = self.angular_vel(target_pose)

self.velocity_publisher.publish(vel_msg)

self.rate.sleep() #publish at the desired rate

#Stop the leader after movement is done
vel_msg.linear.x = 0
vel_msg.angular.z = 0
self.velocity_publisher.publish(vel_msg)

rospy.spin()

def move_forward(self,amount,speed):
target_pose = Pose()
target_pose.position.x = self.pose.position.x #desired_pose.position.x
target_pose.position.y = amount #desired_pose.position.y

error_margin = 0.1
vel_msg = Twist()
while self.calculate_distance(target_pose) >= error_margin:

vel_msg.linear.x = 0
vel_msg.linear.y = speed
vel_msg.linear.z = 0

vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = 0

self.velocity_publisher.publish(vel_msg)

self.rate.sleep() #publish at the desired rate

#Stop the leader after movement is done
vel_msg.linear.x = 0
vel_msg.linear.y = 0
self.velocity_publisher.publish(vel_msg)

#rospy.spin()

def move_backward(self,amount,speed):
target_pose = Pose()
target_pose.position.x = self.pose.position.x #desired_pose.position.x
target_pose.position.y = -amount #desired_pose.position.y

error_margin = 0.1
vel_msg = Twist()
while self.calculate_distance(target_pose) >= error_margin:

vel_msg.linear.x = 0
vel_msg.linear.y = -speed
vel_msg.linear.z = 0

vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = 0

self.velocity_publisher.publish(vel_msg)

self.rate.sleep() #publish at the desired rate

#Stop the leader after movement is done
vel_msg.linear.x = 0
vel_msg.linear.y = 0
self.velocity_publisher.publish(vel_msg)

#rospy.spin()

def move_right(self,amount,speed):
target_pose = Pose()
target_pose.position.x = amount #desired_pose.position.x
target_pose.position.y = self.pose.position.y #desired_pose.position.y

error_margin = 0.1
vel_msg = Twist()
while self.calculate_distance(target_pose) >= error_margin:

vel_msg.linear.x = speed
vel_msg.linear.y = 0
vel_msg.linear.z = 0

vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = 0

self.velocity_publisher.publish(vel_msg)

self.rate.sleep() #publish at the desired rate

#Stop the leader after movement is done
vel_msg.linear.x = 0
vel_msg.linear.y = 0
self.velocity_publisher.publish(vel_msg)

#rospy.spin()

def move_left(self,amount,speed):
target_pose = Pose()
target_pose.position.x = -amount #desired_pose.position.x
target_pose.position.y = self.pose.position.y #desired_pose.position.y
error_margin = 0.1
vel_msg = Twist()
while self.calculate_distance(target_pose) >= error_margin:

vel_msg.linear.x = -speed
vel_msg.linear.y = 0
vel_msg.linear.z = 0

vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = 0

self.velocity_publisher.publish(vel_msg)

self.rate.sleep() #publish at the desired rate

#Stop the leader after movement is done
vel_msg.linear.x = 0
vel_msg.linear.y = 0
self.velocity_publisher.publish(vel_msg)

#rospy.spin()

def draw_square(self):
speed = 0.55
self.move_forward(4.0,speed)
self.move_left(4.0,speed)
self.move_backward(4.0,speed)
self.move_right(4.0,speed)
self.move_forward(4.0,speed)
self.move_left(4.0,speed)

rospy.spin()

if __name__ == ’__main__’:
try:

leader = Leader()
leader.draw_square()

except rospy.ROSInterruptException: pass

CODE WRITTEN INITIALLY BY Marko Križmančić, BUT THEN LATER MODIFIED BY ME:

E. dynamic reconfiguration node.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

import rospy
from dynamic_reconfigure.server import Server
from boids_ros.cfg import ReynoldsConfig

class DynReconf():
"""
Dynamic reconfigure server.

Process parameter changes from rqt_reconfigure and update parameter server.
Publish empty message to let other nodes know there are updated parameters
on server.
"""
def __init__(self):

"""Initialize dynamic reconfigure server."""
Server(ReynoldsConfig, self.callback)

Keep program from exiting
rospy.spin()

def callback(self, config, level):
"""Display all parameters when changed and signal to update."""
rospy.loginfo("[Dynamic reconfigure] => \n" +

"""\tReconfigure Request:
Alignment: {alignment_weight}
Cohesion: {cohesion_weight}
Separation: {separation_weight}

Obstacle: {obstacle_weight}
Leader: {leader_weight}
Max speed: {max_speed}
Max force: {max_force}
Friction: {friction}
Desired seperation: {desired_separation}
Horizon: {horizon}
Obstacle radius: {avoid_radius}""".format(**config))

return config

if __name__ == "__main__":
Initialize the node and name it.
rospy.init_node("dyn_reconf", anonymous=False)

Go to class functions that do all the heavy lifting.
Do error checking.
try:

dr = DynReconf()
except rospy.ROSInterruptException:

pass

F. boids.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

import math
import rospy
from geometry_msgs.msg import Twist, PoseStamped, Pose
from util import Vector2, angle_diff

class Boid(object):
def __init__(self, initial_velocity_x, initial_velocity_y, wait_count, start_count,

↪→ frequency):
self.position = Vector2()
self.velocity = Vector2()
self.mass = 0.18 # Mass of Sphero robot in kilograms
self.wait_count = wait_count # Waiting time before starting
self.start_count = start_count # Time during which initial velocity is being

↪→ sent
self.frequency = frequency # Control loop frequency

Set initial velocity
self.initial_velocity = Twist()
self.initial_velocity.linear.x = initial_velocity_x
self.initial_velocity.linear.y = initial_velocity_y

This dictionary holds values of each flocking components and is used
to pass them to the visualization markers publisher.
self.viz_components = {}

def update_parameters(self, params):
self.rule1_weight = params[’cohesion_weight’]
self.rule2_weight = params[’separation_weight’]

self.rule3_weight = params[’alignment_weight’]
self.obstacle_weight = params[’obstacle_weight’]
#self.leader_weight = 1.0
self.leader_weight = params[’leader_weight’]
self.max_speed = params[’max_speed’]
self.max_force = params[’max_force’]
self.friction = params[’friction’]
self.desired_separation = params[’desired_separation’]
self.horizon = params[’horizon’]
self.avoid_radius = params[’avoid_radius’]

def rule1(self, nearest_agents): #Cohesion
center_of_mass = Vector2()
com_direction = Vector2()
Find mean position of neighboring agents.
for b in nearest_agents:

boid_position = get_agent_position(b)
center_of_mass += boid_position

Magnitude of force is proportional to agents’ distance
from the center of mass.
Force should be applied in the direction of com
if nearest_agents:

com_direction = center_of_mass / len(nearest_agents)
#rospy.logdebug("cohesion*: %s", direction)
d = com_direction.norm()
com_direction.set_mag((self.max_force * (d / self.horizon)))

return com_direction

def rule2(self, nearest_agents): #Seperation

c = Vector2()
N = 0 #Total boid number

for b in nearest_agents:
boid_position = get_agent_position(b)
d = boid_position.norm()
if d < self.desired_separation:

N += 1
boid_position *= -1 # Force towards outside
boid_position.normalize() # Normalize to get only direction.
magnitude is proportional to inverse square of d
where d is the distance between agents
boid_position = boid_position / (d**2)
c += boid_position

if N:
c /= N #average
c.limit(2 * self.max_force) # 2 * max_force gives this rule a slight priority

↪→ .

return c

def rule3(self, nearest_agents): #Alignment

perceived_velocity = Vector2()
pv = Vector2()
Find mean direction of neighboring agents.
for boid in nearest_agents:

boid_velocity = get_agent_velocity(boid)
perceived_velocity += boid_velocity #mean perceived

Steer toward calculated mean direction with maximum velocity.
if nearest_agents:

perceived_velocity.set_mag(self.max_speed)
pv = perceived_velocity - self.velocity
pv.limit(self.max_force)

return pv

def compute_leader_following(self,rel2leader):
for agent in rel2leader:

rel2leader_position = get_leader_position(agent)
Force in the direction that minimizes rel_position 2 leader
i.e. it should be in the direction of rel2leader
direction = Vector2() #initiliazes (0,0)
direction = rel2leader_position # *0.01
d = direction.norm()
direction.set_mag((self.max_force * d))

return direction

def compute_velocity(self, my_agent, nearest_agents,rel2leader):
"""Compute total velocity based on all components."""

While waiting to start, send zero velocity and decrease counter.
if self.wait_count > 0:

self.wait_count -= 1
rospy.logdebug("wait " + ’{}’.format(self.wait_count))
rospy.logdebug("velocity:\n%s", Twist().linear)
return Twist(), None

Send initial velocity and decrease counter.
elif self.start_count > 0:

self.start_count -= 1
rospy.logdebug("start " + ’{}’.format(self.start_count))
rospy.logdebug("velocity:\n%s", self.initial_velocity.linear)
return self.initial_velocity, None

Normal operation, velocity is determined using Reynolds’ rules.
else:

self.velocity = get_agent_velocity(my_agent)
self.old_heading = self.velocity.arg()
self.old_velocity = Vector2(self.velocity.x, self.velocity.y)
rospy.logdebug("old_velocity: %s", self.velocity)

Compute all the components.
v1 = self.rule1(nearest_agents) #cohesion
v2 = self.rule2(nearest_agents) #seperation
v3 = self.rule3(nearest_agents) #alignment

leader = self.compute_leader_following(rel2leader)

Add components together and limit the output.
force = Vector2()
force += v1 * self.rule1_weight
force += v2 * self.rule2_weight
force += v3 * self.rule3_weight
force += leader * self.leader_weight

force.limit(self.max_force)

If agent is moving, apply constant friction force.
If agent’s velocity is less then friction / 2, it would get
negative velocity. In this case, just stop it.
#if self.velocity.norm() > self.friction / 2:
force += self.friction * -1 * self.velocity.normalize(ret=True)
#else:
self.velocity = Vector2()

acceleration = force / self.mass

Calculate total velocity (delta_velocity = acceleration * delta_time).
self.velocity += acceleration / self.frequency
self.velocity.limit(self.max_speed)

#rospy.logdebug("force: %s", force)
#rospy.logdebug("acceleration: %s", acceleration / self.frequency)
#rospy.logdebug("velocity: %s\n", self.velocity)

Return the the velocity as Twist message.
vel = Twist()
vel.linear.x = self.velocity.x
vel.linear.y = self.velocity.y

Pack all components for Rviz visualization.
Make sure these keys are the same as the ones in ‘util.py‘.
self.viz_components[’cohesion’] = v1 * self.rule1_weight
self.viz_components[’separation’] = v2 * self.rule2_weight
self.viz_components[’alignment’] = v3 * self.rule3_weight
#self.viz_components[’avoid’] = avoid * self.obstacle_weight
self.viz_components[’leader’] = leader * self.leader_weight
#self.viz_components[’acceleration’] = acceleration / self.frequency
#self.viz_components[’velocity’] = self.velocity
#self.viz_components[’estimated’] = self.old_velocity
return vel, self.viz_components

def get_agent_velocity(agent):
vel = Vector2()
vel.x = agent.twist.twist.linear.x
vel.y = agent.twist.twist.linear.y
return vel

def get_agent_position(agent):

pos = Vector2()
pos.x = agent.pose.pose.position.x
pos.y = agent.pose.pose.position.y
return pos

def get_leader_position(leader):
pos = Vector2()
pos.x = leader.position.x
pos.y = leader.position.y
return pos

def get_obst_position(obst):
pos = Vector2()
pos.x = obst.position.x
pos.y = obst.position.y
return pos

G. nearest search.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

from __future__ import print_function
import math
import rospy
import message_filters as mf
from copy import deepcopy

from dynamic_reconfigure.msg import Config
from geometry_msgs.msg import PoseArray, Pose, PoseStamped
from nav_msgs.msg import Odometry, OccupancyGrid
from boids_ros.msg import OdometryArray

class NearestSearch(object):
"""
Node that provides information about nearest flockmates and obstacles.

Generally, Reynolds’ flocking algorithm works on distributed systems.
If agents don’t have any sensors, a centralized system is needed. This node
is an ’all-knowing’ hub that makes virtual distributed system possible.
It is subscribed to messages with position and velocity of each agent and
knows the map layout. For each agent, it finds its neighbors within search
radius and calculates their relative position. This data is then published
to individual agents along side the list of obstacles within range.
"""

def map_callback(self, data):
"""Save map occupancy grid and meta-data in class variables."""
self.map = []
self.map_width = data.info.width
self.map_height = data.info.height
self.map_resolution = data.info.resolution
self.map_origin = data.info.origin.position

Reverse the order of rows in map

for i in range(self.map_height - 1, -1, -1):
self.map.append(data.data[i * self.map_width:(i + 1) * self.map_width])

def param_callback(self, data):
"""Update search parameters from server."""
while not rospy.has_param(’/dyn_reconf/horizon’):

rospy.sleep(0.1)

self.horizon = rospy.get_param(’/dyn_reconf/horizon’)
self.r = int(self.horizon / self.map_resolution)

def robot_callback(self, *data):
"""
This callback function is used to publish following topics:

nearest_robots --> contains pose of nearby agents to each agent in flock
e.g. /robot_1/robots topic contains pose of nearby agents to robot_1

avoids --> contains pose of obstacles in the map relative to each agent
e.g. /robot_2/avoids topic contains pose of obstacles rel. to robot_2

rel_target --> contains pose of each agent relative to the leader (robot_0)
e.g. /robot_6/rel2leader topic contains relative pose of robot_6 to leader
Note: For simplicity, robot_0 is chosen as a leader!
"""

for robot in data:
time = rospy.Time.now() #Current time
robot_name = robot.header.frame_id.split(’/’)[1] #robot name

robot_position = robot.pose.pose.position #current robot’s position

####################### Nearest Robots ###################################
nearest_robots = OdometryArray() #collect pose of all nearby robots
nearest_robots.header.stamp = time

nearest_robots.array.append(deepcopy(robot)) # add current robot’s odom to
↪→ array

Now look for neighbor robots within horizon of each robot
for neighbor in data:

neighbor_position = neighbor.pose.pose.position
Distance between robot_position and neighbor_position
d = math.sqrt(pow(robot_position.x - neighbor_position.x, 2)

+ pow(robot_position.y - neighbor_position.y, 2))
if d > 0 and d <= self.horizon:

rel_neighbor_pos = deepcopy(neighbor)
rel_neighbor_pos.pose.pose.position.x = neighbor_position.x -

↪→ robot_position.x
rel_neighbor_pos.pose.pose.position.y = neighbor_position.y -

↪→ robot_position.y
nearest_robots.array.append(rel_neighbor_pos)

self.nearest[robot_name].publish(nearest_robots) #Send to ros publisher

###

############################## Leader ###############################
rel_target = PoseArray() #contains pose of current agent rel to leader

if robot_name == "robot_0": #leader
leader = Pose() #contains pose of leader
leader.position = robot.pose.pose.position

else:
pose_target = Pose()
pose_target.position.x = leader.position.x-robot_position.x
pose_target.position.y = leader.position.y-robot_position.y
getting time to rel_target header is important to synchorize this topic
with other ROS topics (e.g. .../obstacles .../nearest_robots)
rel_target.header.stamp = time #this is important to synchorize
rel_target.poses.append(pose_target)
self.leader[robot_name].publish(rel_target)

##

def __init__(self):
"""Create subscribers and publishers."""

Get parameters and initialize class variables.
self.num_agents = rospy.get_param(’/num_of_robots’)
robot_name = rospy.get_param(’˜robot_name’)

Create publishers for commands
pub_keys = [robot_name + ’_{}’.format(i) for i in range(self.num_agents)]

Publisher for locations of nearest agents
self.nearest = dict.fromkeys(pub_keys)
for key in self.nearest.keys():

self.nearest[key] = rospy.Publisher(’/’ + key + ’/nearest’, OdometryArray,
↪→ queue_size=1)

Publisher for relative position to leader
self.leader = dict.fromkeys(pub_keys)
for key in self.leader.keys():

robot_0 is leader, so no need to publish it’s relative position to itself
↪→ :)

if key != "robot_0":
self.leader[key] = rospy.Publisher(’/’ + key + ’/rel2leader’, PoseArray,

↪→ queue_size=1)

Create subscribers
rospy.Subscriber(’/map’, OccupancyGrid, self.map_callback, queue_size=1)
rospy.sleep(0.5) # Wait for first map_callback to finish
rospy.Subscriber(’/dyn_reconf/parameter_updates’, Config, self.param_callback,

↪→ queue_size=1)
self.param_callback(None)

topic_name = ’/’ + robot_name + ’_{}/odom’

subs = [mf.Subscriber(topic_name.format(i), Odometry) for i in range(self.
↪→ num_agents)]

self.ts = mf.ApproximateTimeSynchronizer(subs, 10, 0.11)
self.ts.registerCallback(self.robot_callback)

rospy.spin()

if __name__ == ’__main__’:
rospy.init_node(’NearestSearch’)

try:
ns = NearestSearch()

except rospy.ROSInterruptException:
pass

H. reynolds controller.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

import rospy
import message_filters as mf
from dynamic_reconfigure.msg import Config
from geometry_msgs.msg import Twist, PoseArray, PoseStamped, Pose
from visualization_msgs.msg import MarkerArray

from boids import Boid
from util import MarkerSet
from boids_ros.msg import OdometryArray

class ReynoldsController(object):
"""
ROS node implementation of Reynolds’ flocking algorithm.

This node represents a single agent in the flock. It subscribes to the list
of other agents within search radius. Velocity of the agent is calculated
based on Reynolds’ flocking rules and this information is published to the
simulator or physical implementation of the agent.
"""

def callback(self, *data):
"""
Unpack received data, compute velocity and publish the result.

This is a callback of message_filters TimeSynchronizer subscriber. It is
called only when all defined messages arrive with the same time stamp.
In this case, there are two messages: "nearest" of type OdometryArray
and "avoid" of type PoseArray. ‘data‘ is a list containing data from
these messages.

‘data[0]‘ contains neighboring agents
‘data[1]‘ contains positions of obstacles

"""
my_agent = data[0].array[0] # odometry data for this agent is first in list
nearest_agents = data[0].array[1:] # odometry data for neighbors follows
rel2leader = data[1].poses # relative position to leader

if self.params_set:
Compute agent’s velocity and publish the command.
ret_vel, viz = self.agent.compute_velocity(my_agent, nearest_agents,

↪→ rel2leader)
average_heading = self.markers.get_heading(viz)

This is for use with real robots (Spheros).
if self.run_type == ’real’:

cmd_vel = Twist()
cmd_vel.linear.x = int(ret_vel.linear.x * 100)
cmd_vel.linear.y = int(ret_vel.linear.y * 100)
self.cmd_vel_pub.publish(cmd_vel)

This is for use with simulation.
elif self.run_type == ’sim’:

self.cmd_vel_pub.publish(ret_vel)

Publish markers for visualization in Rviz.
marker_array = self.markers.update_data(viz)

self.markers_pub.publish(marker_array)

def param_callback(self, data):
"""Call method for updating flocking parameters from server."""
param_names = [’alignment_weight’, ’cohesion_weight’, ’separation_weight’, ’

↪→ obstacle_weight’,
’leader_weight’, ’max_speed’, ’max_force’, ’friction’, ’

↪→ desired_separation’,
’horizon’, ’avoid_radius’]

Dictionary for passing parameters.
param_dict = {param: rospy.get_param(’/dyn_reconf/’ + param) for param in

↪→ param_names}
self.agent.update_parameters(param_dict)
self.params_set = True

def __init__(self):
"""Initialize agent instance, create subscribers and publishers."""
Initialize class variables.
init_vel_x = rospy.get_param("˜init_vel_x", 0)
init_vel_y = rospy.get_param("˜init_vel_y", 0)
frequency = rospy.get_param("/ctrl_loop_freq")
wait_count = int(rospy.get_param("/wait_time") * frequency)
start_count = int(rospy.get_param("/start_time") * frequency)
self.run_type = rospy.get_param("/run_type")
self.enable_leader_following = rospy.get_param("/enable_leader_following")
self.agent = Boid(init_vel_x, init_vel_y, wait_count, start_count, frequency)
self.markers = MarkerSet()
self.params_set = False

Create a publisher for commands.
self.cmd_vel_pub = rospy.Publisher(’cmd_vel’, Twist, queue_size=frequency)
self.markers_pub = rospy.Publisher(’markers’, MarkerArray, queue_size=frequency)

Create subscribers.
rospy.Subscriber(’/dyn_reconf/parameter_updates’, Config, self.param_callback,

↪→ queue_size=1)
#rospy.Subscriber("leader", PoseStamped, self.leader_callback,queue_size=1)

subs = [mf.Subscriber("nearest", OdometryArray), mf.Subscriber("rel2leader",
↪→ PoseArray)]

self.ts = mf.TimeSynchronizer(subs, 10)
self.ts.registerCallback(self.callback)

Keep program from exiting
rospy.spin()

if __name__ == ’__main__’:
Initialize the node and name it.
rospy.init_node(’ReynoldsController’)#, log_level=rospy.DEBUG)

Go to class functions that do all the heavy lifting
Do error checking
try:

rc = ReynoldsController()
except rospy.ROSInterruptException:

pass

I. util.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
This module is used for utility and helper functions.

Classes:
Vector2: 2D vector class representation with x and y components
MarkerSet: convenience class for handling interactive Rviz markers

Function:
pose_dist: calculate distance between two ROS Pose type variables

"""

import math
import rospy
import logging
import numpy as np
from visualization_msgs.msg import Marker, MarkerArray
from std_msgs.msg import ColorRGBA
from geometry_msgs.msg import Pose, Vector3, Quaternion
from tf.transformations import quaternion_from_euler

class Vector2(object):
"""
2D vector class representation with x and y components.

Supports simple addition, subtraction, multiplication, division and
normalization, as well as getting norm and angle of the vector and
setting limit and magnitude.

Attributes:
x (float): x component of the vector
y (float): y component of the vector

Methods:
norm(self): Return the norm of the vector

arg(self): Return the angle of the vector
normalize(self): Normalize the vector
limit(self, value): Limit vector’s maximum magnitude to given value
set_mag(self, value): Set vector’s magnitude without changing direction

"""

def __init__(self, x=0, y=0):
"""
Initialize vector components.

Args:
x (float): x component of the vector
y (float): y component of the vector

"""
self.x = x
self.y = y

@classmethod
def from_norm_arg(cls, norm=0, arg=0):

inst = cls(1, 1)
inst.set_mag(norm)
inst.set_angle(arg)
return inst

def __add__(self, other):
if isinstance(other, self.__class__):

return Vector2(self.x + other.x, self.y + other.y)
elif isinstance(other, int) or isinstance(other, float):

return Vector2(self.x + other, self.y + other)

def __sub__(self, other):
if isinstance(other, self.__class__):

return Vector2(self.x - other.x, self.y - other.y)
elif isinstance(other, int) or isinstance(other, float):

return Vector2(self.x - other, self.y - other)

def __div__(self, other):
if isinstance(other, self.__class__):

raise ValueError("Cannot divide two vectors!")
elif isinstance(other, int) or isinstance(other, float):

if other != 0:
return Vector2(self.x / other, self.y / other)

else:
return Vector2()

def __mul__(self, other):
if isinstance(other, self.__class__):

raise NotImplementedError("Multiplying vectors is not implemented!")
elif isinstance(other, int) or isinstance(other, float):

return Vector2(self.x * other, self.y * other)

def __rmul__(self, other):
return self.__mul__(other)

def __str__(self):
return "({: .5f}, {: 6.1f})".format(self.norm(), self.arg())

return "({: .3f}, {: .3f})".format(self.x, self.y)

def __repr__(self):
return "Vector2({0}, {1})\n\t.norm = {2}\n\t.arg = {3}".format(self.x, self.y,

↪→ self.norm(), self.arg())

def norm(self):
"""Return the norm of the vector."""
return math.sqrt(pow(self.x, 2) + pow(self.y, 2))

def arg(self):
"""Return the angle of the vector."""
return math.degrees(math.atan2(self.y, self.x))

def set_mag(self, value):
"""Set vector’s magnitude without changing direction."""
if self.norm() == 0:

logging.warning(’Trying to set magnitude for a null-vector! Angle will be set
↪→ to 0!’)

self.x = 1
self.y = 0

else:
self.normalize()

self.x *= value
self.y *= value

def set_angle(self, value):
"""Set vector’s direction without changing magnitude."""
if self.norm() == 0:

logging.warning(’Trying to set angle for a null-vector! Magnitude will be set
↪→ to 1!’)

self.x = 1
self.y = 0

delta = angle_diff(self.arg(), value)
self.rotate(delta)

def rotate(self, value):
"""Rotate vector by degrees specified in value."""
value = math.radians(value)
self.x, self.y = math.cos(value) * self.x - math.sin(value) * self.y, \

math.sin(value) * self.x + math.cos(value) * self.y

def normalize(self, ret=False):
"""Normalize the vector."""
d = self.norm()
if d:

if not ret:
self.x /= d
self.y /= d

else:
return Vector2(self.x / d, self.y / d)

def limit(self, value):
"""Limit vector’s maximum magnitude to given value."""
if self.norm() > value:

self.set_mag(value)

def limit_lower(self, value):
"""Limit vector’s minimum magnitude to given value."""
if self.norm() < value:

self.set_mag(value)

def constrain(self, old_value, max_value):
"""Limit vector’s change of direction to max_value from old_value."""
desired_value = self.arg()
delta = angle_diff(old_value, desired_value)
if abs(delta) > max_value:

value = angle_diff(desired_value, old_value + math.copysign(max_value, delta)
↪→)

self.rotate(value)

def angle_diff(from_angle, to_angle):
diff = (to_angle - from_angle) % 360
if diff >= 180:

diff -= 360
return diff

def pose_dist(pose1, pose2):
"""Return Euclidean distance between two ROS poses."""
x1 = pose1.position.x
y1 = pose1.position.y
x2 = pose2.position.x
y2 = pose2.position.y

return math.sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2))

class MarkerSet(object):
"""
Convenience class for handling Rviz markers.

Markers are used to visualize each of the Reynolds’ rules component in Rviz.
Markers are set to arrows to represent force and velocity vectors.
"""
def __init__(self):

"""Initialize class and set common marker properties."""
self.visualization = MarkerArray()

Make sure these keys are the same as the ones in ‘boids.py‘
#keys = [’alignment’, ’cohesion’, ’separation’, ’avoid’, ’leader’, ’acceleration

↪→ ’, ’velocity’, ’estimated’]
keys = [’alignment’, ’cohesion’, ’separation’, ’leader’]
self.markers = dict.fromkeys(keys)

marker_id = 0
for key in keys:

self.markers[key] = Marker()
self.markers[key].header.frame_id = rospy.get_namespace() + ’base_link’
self.markers[key].header.stamp = rospy.get_rostime()
self.markers[key].ns = rospy.get_namespace().split(’/’)[1]

self.markers[key].id = marker_id
self.markers[key].type = Marker.ARROW
self.markers[key].action = Marker.ADD
self.markers[key].pose = Pose()
self.markers[key].pose.position.z = 0.036 # Sphero radius
self.markers[key].lifetime = rospy.Duration(0)
self.markers[key].frame_locked = True
marker_id += 1

Set colors of each marker
self.markers[’alignment’].color = ColorRGBA(0, 0, 1, 1) # blue
self.markers[’cohesion’].color = ColorRGBA(0, 1, 0, 1) # green
self.markers[’separation’].color = ColorRGBA(1, 0, 0, 1) # red
#self.markers[’avoid’].color = ColorRGBA(1, 1, 0, 1) # yellow
self.markers[’leader’].color = ColorRGBA(0, 1, 1, 1) # light blue
#self.markers[’acceleration’].color = ColorRGBA(0, 0, 0, 1) # black
#self.markers[’velocity’].color = ColorRGBA(1, 1, 1, 1) # white
#self.markers[’estimated’].color = ColorRGBA(1, 0.55, 0, 1) # orange

def update_data(self, values):
"""
Set scale and direction of markers.

Args:
values (dict): Holds norm and arg data for each component

"""
if values is not None:

for key in self.markers.keys():
data = values[key]
angle = Quaternion(*quaternion_from_euler(0, 0, math.radians(data.arg())))
scale = Vector3(data.norm(), 0.02, 0.02)

self.markers[key].header.stamp = rospy.get_rostime()
self.markers[key].pose.orientation = angle
self.markers[key].scale = scale

self.visualization.markers = self.markers.values()
return self.visualization

def get_heading(self, values):
if values is not None:

angle=0
iter = 0
for key in self.markers.keys():

data = values[key]
angle+= math.radians(data.arg())
iter+=1

return angle/iter
return 0

J. setup sim.launch

<launch>
<!-- Set arguments. Change values in this section to control various parameters of

↪→ execution. -->

<!-- There are some parameters that can be changed in other launch files but you
↪→ should generally leave them as they are -->

<!-- ********** START OF SECTION ********** -->
<arg name="num_of_robots" default="2"/> <!-- Number of robots used. -->
<arg name="map_name" default="empty_10x10"/> <!-- Name of the map used. -->
<arg name="ctrl_loop_freq" default="10"/> <!-- Frequency used by Reynolds rules.

↪→ -->
<arg name="data_stream_freq" default="10"/> <!-- Position streaming frequency, used

↪→ by Kalman filter. -->
<arg name="debug_boids" default="false"/> <!-- Enable debugging for Reynolds

↪→ controller node. -->
<arg name="debug_kalman" default="false"/> <!-- Enable debugging for Kalman filter

↪→ node. -->
<arg name="use_kalman" default="false"/> <!-- Use either estimated data from Kalman

↪→ filter or true data from simulator. -->
<arg name="wait_time" default="0"/> <!-- During first X seconds of execution, no

↪→ velocity commands are sent to robots. -->
<arg name="start_time" default="2"/> <!-- During first X seconds after "wait_time",

↪→ inital velocity commands are sent to robots. -->
<arg name="enable_leader_following" default="true"/> <!-- Enable Leader Following

↪→ Behaviour-->
<!-- *********** END OF SECTION *********** -->

<arg name="map_world" default="$(find boids_ros)/resources/sim/$(arg map_name)_$(
↪→ arg num_of_robots).world"/>

<arg name="map_yaml" default="$(find boids_ros)/resources/maps/$(arg map_name).yaml
↪→ "/>

<!-- Set arguments as ros parameter so all nodes can access them. -->
<param name="num_of_robots" type="int" value="$(arg num_of_robots)"/>
<param name="ctrl_loop_freq" type="int" value="$(arg ctrl_loop_freq)"/>
<param name="data_stream_freq" type="int" value="$(arg data_stream_freq)"/>
<param name="debug_boids" type="boolean" value="$(arg debug_boids)"/>
<param name="debug_kalman" type="boolean" value="$(arg debug_kalman)"/>
<param name="use_kalman" type="boolean" value="$(arg use_kalman)"/>
<param name="wait_time" type="double" value="$(arg wait_time)"/>
<param name="start_time" type="double" value="$(arg start_time)"/>
<param name="run_type" type="string" value="sim"/>
<!-- Alperen-->
<param name="enable_leader_following" type="boolean" value="$(arg

↪→ enable_leader_following)"/>

<!-- Start map server. -->
<node pkg="map_server" type="map_server" args="$(arg map_yaml)" name="map_server"/>

<!-- Start Stage simulator. -->
<node pkg="stage_ros" type="stageros" name="simulator" args="$(arg map_world)"/>

<!-- Start rqt GUI and dynamic reconfigure node. -->
<node pkg="rqt_gui" type="rqt_gui" name="rqt_gui"/>
<node pkg="boids_ros" type="dynamic_reconfigure_node.py" name="dyn_reconf" output="

↪→ screen"/>

<!-- Start simulation_tf node: provide tf transforms for simulation. -->
<node pkg="boids_ros" type="simulation_tf.py" name="tf_server"/>

<!-- Start rviz. -->
<param name="robot_description" textfile="$(find boids_ros)/resources/simple_ball.

↪→ urdf"/>
<node pkg="rviz" type="rviz" name="rviz" args="-d $(find boids_ros)/launch/sim/

↪→ sphero_sim.rviz"/>

</launch>

K. reynolds sim.launch

<launch>
<!-- Config file with initial velocities for each robot. -->
<arg name="filename" default="$(find boids_ros)/cfg/sphero_init_vel.cfg"/>

<!-- Start Reynolds controller nodes launcher. -->
<node pkg="boids_ros" type="reynolds_launch.sh" name="reynolds_launcher" args="$

↪→ (arg filename) robot" output="screen"/>

<!-- Start nearest_search node: search for other robots in range. -->
<node pkg="boids_ros" type="nearest_search.py" name="search" output="screen">

<param name="robot_name" type="string" value="robot"/>
</node>

<!-- Move the leader via recorded rosbag file -->
<!-- <arg name="rosbag_args" default=’$(find boids_ros)/bagfiles/move_leader_0

↪→ .5-1.bag’/> -->
<!-- <node pkg="rosbag" type="play" name="rosbag_move_leader" args="$(arg

↪→ rosbag_args)" output="screen"/> -->

<arg name="node_start_delay" default="1.8" />
<!-- Move leader -->
<node pkg="boids_ros" type="leader_controller.py" launch-prefix="bash -c ’sleep

↪→ $(arg node_start_delay); $0 $@’ " name="leader_controller" output="screen"
↪→ />

<!-- Record Bagfile for data_analyzer -->
<arg name="bagname"/>
<node pkg="rosbag" type="record" name="rosbag_record" args=’-O $(find boids_ros)

↪→ /bagfiles/$(arg bagname).bag -e "(.*)/odom" "(.*)/cmd_vel" ’/>

<!-- Record a bag for debug purposes -->
<!-- <arg name="rosbag_args" default=’-O $(find boids_ros)/bagfiles/sim_test.bag

↪→ -e "(.*)/odom" ’/> -->
<!-- <arg name="rosbag_args" default=’-O $(find boids_ros)/bagfiles/kalman_test.

↪→ bag /robot_0/odom /robot_0/debug_est’/> -->
<!-- <node pkg="rosbag" type="record" name="rosbag_record" args="$(arg

↪→ rosbag_args)" output="screen"/> -->
</launch>

CODE WRITTNE ONLY BY Marko Križmančić:

L. simulation tf.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
Broadcast tf data during simulation.

tf data is produced from position of each robot received on Odometry messages.
It is used to visualize simulated robots in Rviz.
"""

import rospy
import tf2_ros
import geometry_msgs.msg
from nav_msgs.msg import Odometry

def callback(msg):
global tfBuffer
try:

tf = geometry_msgs.msg.TransformStamped()
tf.child_frame_id = msg.header.frame_id
tf.header.frame_id = "map"
tf.header.stamp = msg.header.stamp

tf.transform.translation.x = 0
tf.transform.translation.y = 0
tf.transform.translation.z = 0

tf.transform.rotation.x = 0
tf.transform.rotation.y = 0
tf.transform.rotation.z = 0
tf.transform.rotation.w = 1

broadcaster.sendTransform(tf)

except BaseException as exc:
print exc
tfBuffer.clear()
return

if __name__ == ’__main__’:
rospy.init_node(’simulation_tf’)
tfBuffer = tf2_ros.Buffer()
listener = tf2_ros.TransformListener(tfBuffer)
broadcaster = tf2_ros.TransformBroadcaster()

num_of_robots = rospy.get_param("/num_of_robots")
[rospy.Subscriber("/robot_{}/odom".format(i), Odometry, callback) for i in range(

↪→ num_of_robots)]

rospy.spin()

