
25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 1/14

 

> jbohren.com <  home  articles  tutorials  projects  contact

 

Building Modular ROS Packages

posted 2014.02.14
ros  catkin  cmake  modularity  libraries  tutorial  c++

Introduction
The key power of the Catkin build tool is how it makes it easier to build modular software
without having to keep track of the specific build products of each package. Modularity, in this
case, comes in the form of building specific functionality into libraries which can be used by
other packages. This tutorial is meant for someone with minimal to moderate CMake
experience and minimal experience with Catkin.

This tutorial begins by separating the executable code from the ROS C++ Hello World Tutorial
into a library and building it with CMake and Catkin. If you are unfamilar with Catkin or CMake,
this tutorial will make more sense after you have worked through the Gentle Introduction to
Catkin.

The next step involves creating a second package which depends on the first package and
uses the functionality defined in our library. This inter-dependency then demonstrates how to
use the catkin_package()  CMake function to declare exported targets for a package.

NOTE: This tutorial was written for the ROS Hydro Distribution. Assuming the
commands are still accurate, if you wish to follow this tutorial with a different
distribution of ROS, any time hydro is mentioned, simply replace it with the
shortname for that distribution.

Pre-Requisites

A computer running a recent Ubuntu Linix  LTS (long-term support) installation
Minimal experience with the Linux and the command-line interface
Minimal experience with compiling C++ code

Tools Used

1

https://jbohren.com/
https://jbohren.com/articles
https://jbohren.com/tutorials
https://jbohren.com/projects
https://jbohren.com/contact
https://jbohren.com/articles/modular-ros-packages
https://jbohren.com/articles/roscpp-hello-world
https://jbohren.com/articles/gentle-catkin-intro
http://wiki.ros.org/hydro


25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 2/14

Ubuntu Linux
The bash shell
C++
CMake
Catkin
Any plain-text editor (I like vim ).

ROS Packages Used

roscpp
rosconsole
catkin

Number of Windows Needed

Browser for these instructions
Window for your text editor
Terminal to navigate the filesystem and execute build commands

Contents
Introduction

Pre-Requisites
Tools Used
ROS Packages Used
Number of Windows Needed

Install ROS (If not installed)
Add the ROS Binary Package Repository
Install the Base ROS Packages

Create a Standard Catkin Workspace
Create a Catkin Package
Separating Functionality into a Library

Create the Library Code
Create the Node
Building the Node (and getting a compiler error)
Building the Node (and getting a linker error)
Building the Node (and succeeding)

Using Libraries from Other Packages
Create the Second Package and Node
Building the Node (and getting a compiler error again)

Exporting Package Flags to Other Packages
Conclusion

Install ROS (If not installed)
For Ubuntu Linux, you can follow the following instructions, for other Linux platforms, see the
main ROS installation instructions. As of the writing of this tutorial, ROS packages are only built
with the Debian package management system . This makes it easy to install on debian-
based Linux distributions like Ubuntu.

1
2

3
4

5
6

7

http://wiki.ros.org/roscpp
http://wiki.ros.org/rosconsole
http://wiki.ros.org/catkin
http://wiki.ros.org/ROS/Installation


25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 3/14

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -cs) main" > 

wget http://packages.ros.org/ros.key -O - | sudo apt-key add - 

sudo apt-get update 

sudo apt-get install ros-hydro-ros-base 

echo $CMAKE_PREFIX_PATH 

source /opt/ros/hydro/setup.bash 

Add the ROS Binary Package Repository

First, add the binary package repository hosted on ros.org to your sysmtem. This will allow you
to locate pre-compiled ROS packages, and only needs to be done once, but is idempotent:

Next, get the ros.org PGP public key. This also only needs to be done once and is also
idempotent.This will let you verify that your ROS packages are actually coming from ros.org
and not some malicious middle-man. This is done automatically whenever you install a
package from ros.org.

Install the Base ROS Packages

First, update the binary package index. This should be done whenever you want to make sure
your system knows about the latest versions of binary packages available:

Finally, install the base ROS packages from the ROS “Hydromedusa” distribution:

There are lots of other ROS packages available to install, but for this tutorial you only need a
few of the “core” packages. To see the list of currently available binary packags, their versions,
and build status, you can see the ROS debian package build status page.

Create a Standard Catkin Workspace
First, make sure your environment is set up properly. To do this, inspect the contents of the
CMAKE_PREFIX_PATH  environment variable to see which Catkin workspaces are already

loaded in your environment:

If this is set to /opt/ros/hydro  then you shouldn’t have any issues. If it is set to something
else (or empty) open a new shell without sourcing the setup file of another workspace, and
then source the system environment setup file:

Create the workspace directories in an empty directory of your choosing somewhere in your
filesystem, and run catkin_make  to generate setup files for your workspace which extend
those in /opt/ros/hydro :

http://www.ros.org/debbuild/hydro


25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 4/14

mkdir build devel src 

catkin_make 

. 

├── build 

│   └── ... 

├── devel 

│   └── ... 

└── src 

    └── CMakeLists.txt -> /opt/ros/hydro/share/catkin/cmake/toplevel.cmake 

source devel/setup.bash 

mkdir src/modular_lib_pkg 

# Declare the version of the CMake API for forward-compatibility 

cmake_minimum_required(VERSION 2.8) 

 

# Declare the name of the CMake Project 

project(modular_lib_pkg) 

 

# Find Catkin 

find_package(catkin REQUIRED) 

# Declare this project as a catkin package 

catkin_package()

<package> 

  <!-- Package Metadata --> 

  <name>modular_lib_pkg</name> 

  <maintainer email="you@example.com">Your Name</maintainer> 

  <description> 

    A ROS tutorial on modularity. 

  </description> 

  <version>0.0.0</version> 

  <license>BSD</license> 

 

You should now have a standard catkin workspace with the following structure. All paths in this
tutorial will be given relative to the .  shown below:

Finally, source one of the setup files in your newly-populated devel  directory to load this
workspace into your environment.

Create a Catkin Package
Create a new directory for your package:

Add bare-bones Catkin CMakeLists.txt  and package.xml  files to make your directory a
valid package:

src/modular_lib_pkg/CMakeLists.txt

src/modular_lib_pkg/package.xml



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 5/14

  <!-- Required by Catkin --> 

  <buildtool_depend>catkin</buildtool_depend> 

</package>

// Inclusion guard to prevent this header from being included multiple times 

#ifndef __MODULAR_LIB_PKG_HELLO_WORLD_H 

#define __MODULAR_LIB_PKG_HELLO_WORLD_H 

 

//! Broadcast a hello-world message over ROS_INFO 

void say_hello(); 

 

#endif

Separating Functionality into a Library
The first step in making code available for use in other ROS packages is to encapsulate its
functionality into a library.

On most operating systems, including Linux , there are two types of libraries: static libraries
and dynamic libraries. Both of these types of libraries contain compiled binary code which can
be executed directly by a computer.

Static libraries ( .a  for “archive” on Linux) are linked into an executable when it is built and it
becomes part of that executable. When the executable is loaded, the binary code that was
copied from the static library is also loaded. Dynamic libraries ( .so  for “shared object” on
Linux), however, are not copied into the executable, and instead are loaded at runtime.

This means not only are dynamically-linked executables smaller, but also the libraries that they
depend on chan change internally without necessitating recompilation of the executable.

In the ROS community, dynamic libraries are most commonly used, and this is what will be built
by default when using Catkin.

Create the Library Code

The first step is to create the library. Our library will encapsulate the hello-world functionality
used in the ROS C++ hello-world tutorial  so that you can call a single function called
say_hello()  to broadcast “Hello, world!” over the /rosout  topic.

There’s nothing fundamentally different between putting C++ code in a library as opposed to an
executable. What is required, however, is to split the code definition from the declaration. This
involves creating two files: a header file and a source file.

The header file should contain only what is needed by the compiler of anyone who uses the
library. As such, it only needs to contain function and class delcarations, and does not need to
contain function definitions.

The header with the declaration of our say_hello()  function is as follows:

modular_lib_pkg/include/modular_lib_pkg/hello_world.h

Next is the source or implementation file. This file should contain what is needed by the linker
to connect function calls to binary code. As such, it needs to contain all of the definitions of the

8

9



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 6/14

// Include the ROS C++ APIs 

#include <ros/ros.h>

 

void say_hello() { 

  ROS_INFO_STREAM("Hello, world!"); 

}

# Declare the version of the CMake API for forward-compatibility 

cmake_minimum_required(VERSION 2.8) 

 

# Declare the name of the CMake Project 

project(modular_lib_pkg) 

 

# Find and get all the information about the roscpp package 

find_package(roscpp REQUIRED) 

 

# Find Catkin 

find_package(catkin REQUIRED) 

# Declare this project as a catkin package 

catkin_package() 

 

# Add the headers from roscpp 

include_directories(${roscpp_INCLUDE_DIRS}) 

 

# Define a library target called hello_world 

add_library(hello_world src/hello_world.cpp) 

target_link_libraries(hello_world ${roscpp_LIBRARIES})

<package> 

  <!-- Package Metadata --> 

  <name>modular_lib_pkg</name> 

  <maintainer email="you@example.com">Your Name</maintainer> 

  <description> 

    A ROS tutorial on modularity. 

  </description> 

  <version>0.0.0</version> 

  <license>BSD</license> 

 

  <!-- Required by Catkin --> 

functions declared in the corresponding header.

The source file with the definition of say_hello()  is as follows:

modular_lib_pkg/src/hello_world.cpp

Now that we’ve written the code for the library, we can add a rule to the CMakeLists.txt  file
to actually build it. Note that just like in the ROS C++ hello-world tutorial , we need to add a
dependency on roscpp  in order to use ROS. This is just like adding an executable with the
add_executable()  CMake command: instead, we use add_library() :

src/modular_lib_pkg/CMakeLists.txt

Also, now that we’re using the roscpp  package, we need to list it as a build- and run-
dependency of our package:

src/modular_lib_pkg/package.xml

9



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 7/14

  <buildtool_depend>catkin</buildtool_depend> 

 

  <!-- Package Dependencies --> 

  <build_depend>roscpp</build_depend> 

  <run_depend>roscpp</run_depend> 

</package>

Scanning dependencies of target hello_world 

[100%] Building CXX object modular_lib_pkg/CMakeFiles/hello_world.dir/src/hello_worl

Linking CXX shared library /tmp/devel/lib/libhello_world.so 

[100%] Built target hello_world 

// Include the ROS C++ APIs 

#include <ros/ros.h>

 

// Include the declaration of our library function 

#include <modular_lib_pkg/hello_world.h> 

 

// Standard C++ entry point 

int main(int argc, char** argv) { 

  // Initialize ROS 

  ros::init(argc, argv, "hello_world_node"); 

  ros::NodeHandle nh; 

 

  // Call our library function 

  say_hello(); 

 

  // Wait for SIGINT/Ctrl-C 

  ros::spin(); 

  return 0; 

}

add_executable(hello_world_node src/hello_world_node.cpp) 

target_link_libraries(hello_world_node ${roscpp_LIBRARIES}) 

At this point you should be able to compile the library by running catkin_make  from the root
of your workspace and see the following output:

Notice that it built the hello_world  target into a file called libhello_world.so . This is the
standard naming convention for dynamic libraries on Linux. Also, it built the library into the
lib  subdirectory of the develspace, so when you source one of the setup files in the devel

directory, it will make this library available for dynamic linking at runtime.

Create the Node

Now that we have our hello_world  library, we can write a simple program to call the
say_hello()  function in that library. This program is nearly identical to the one used in the

ROS C++ hello-world Tutorial , except we replace the call to ROS_INFO  with a call to
say_hello()  and we include the header file in the previous section.

modular_lib_pkg/src/hello_world_node.cpp

To build this node, just add an appropriate add_executable()  call to the bottom of the
package’s CMakeLists.txt :

9



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 8/14

[100%] Building CXX object modular_lib_pkg/CMakeFiles/hello_world_node.dir/src/hello

/tmp/src/modular_lib_pkg/src/hello_world_node.cpp:5:42: fatal error: modular_lib_pkg

compilation terminated. 

include_directories(include ${roscpp_INCLUDE_DIRS) 

[100%] Building CXX object modular_lib_pkg/CMakeFiles/hello_world_node.dir/src/hello

Linking CXX executable /tmp/foo/devel/lib/modular_lib_pkg/hello_world_node 

CMakeFiles/hello_world_node.dir/src/hello_world_node.cpp.o:hello_world_node.cpp:func

collect2: ld returned 1 exit status 

target_link_libraries(hello_world_node ${roscpp_LIBRARIES} hello_world) 

# Declare the version of the CMake API for forward-compatibility 

cmake_minimum_required(VERSION 2.8) 

Building the Node (and getting a compiler error)

At this point, you can try to build hello_world_node  with catkin_make , but you will see the
following error:

The compiler is complaining about modular_lib_pkg/hello_world.h  not existing, but we
know it exists! The problem isn’t that the file doesn’t exist, but rather that we haven’t told the
compiler where to look for it.

In the same way that we added the header search paths for roscpp , we also need to add our
own local include directory where we put our own headers. To do so, just add the relative path
to src/modular_lib_pkg/include  to the existing include_directories()  command in
CMakeLists.txt :

Building the Node (and getting a linker error)

At this point, you can try to build hello_world_node  with catkin_make  again, but you will
see another error:

This time, hello_world_node.cpp  is compiled successfully, but the linker reports an error that
the say_hello()  function is undefined. The declaration was found in the hello_world.h

header file, otherwise it wouldn’t have compiled, still the definition from hello_world.cpp

was missing.

In order to resolve this, in addition to linking against ${roscpp_LIBRARIES} , we also link
hello_world_node  against the hello_world  target so that its symbols are defined for the

linker. This is done by adding hello_world  to the existing target_link_libraries()

command like the following:

The following CMakeLists.txt  file contains both this and the previous modifications:

src/modular_lib_pkg/CMakeLists.txt



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 9/14

 

# Declare the name of the CMake Project 

project(modular_lib_pkg) 

 

# Find and get all the information about the roscpp package 

find_package(roscpp REQUIRED) 

 

# Find Catkin 

find_package(catkin REQUIRED) 

# Declare this project as a catkin package 

catkin_package() 

 

# Add the local headers and the headers from roscpp 

include_directories(include ${roscpp_INCLUDE_DIRS}) 

 

# Define a library target called hello_world 

add_library(hello_world src/hello_world.cpp) 

target_link_libraries(hello_world ${roscpp_LIBRARIES}) 

 

# Define an executable target called hello_world_node 

add_executable(hello_world_node src/hello_world_node.cpp) 

target_link_libraries(hello_world_node ${roscpp_LIBRARIES} hello_world)

rosrun modular_lib_pkg hello_world_node 

mkdir src/modular_node_pkg 

Building the Node (and succeeding)

Now you should be able to compile hello_world_node  succesfully and then (assuming you
sourced one of your workspace’s setup files) you can run it with rosrun :

This node does the same thing as before, except now, the core functionality is implemented in
a separate library, which could more easily be used by other packages.

Using Libraries from Other Packages
Now that we’ve created a single package with its functionality built into a library, we can create
another package which also uses that functionality. In this case, we’ll create another
hello_world_node  in another package which also links against libhello_world.so  from
modular_lib_pkg .

Create the Second Package and Node

First, create a package for the new node called modular_node_pkg :

Next, add the source code for our node. This code is exactly the same as the
hello_world_node.cpp  in the modular_lib_pkg :

modular_node_pkg/hello_world_node.cpp



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 10/14

// Include the ROS C++ APIs 

#include <ros/ros.h>

 

// Include the declaration of our library function 

#include <modular_lib_pkg/hello_world.h> 

 

// Standard C++ entry point 

int main(int argc, char** argv) { 

  // Initialize ROS 

  ros::init(argc, argv, "hello_world_node"); 

  ros::NodeHandle nh; 

 

  // Call our library function 

  say_hello(); 

 

  // Wait for SIGINT/Ctrl-C 

  ros::spin(); 

  return 0; 

}

# Declare the version of the CMake API for forward-compatibility 

cmake_minimum_required(VERSION 2.8) 

 

# Declare the name of the CMake Project 

project(modular_node_pkg) 

 

# Find and get all the information about the roscpp package 

find_package(roscpp REQUIRED) 

 

# Find and get all the information about the modular_lib_pkg package 

find_package(modular_lib_pkg REQUIRED) 

 

# Find Catkin 

find_package(catkin REQUIRED) 

# Declare this project as a catkin package 

catkin_package() 

 

# Add the headers from roscpp 

include_directories(${roscpp_INCLUDE_DIRS} ${modular_lib_pkg_INCLUDE_DIRS}) 

 

# Define an executable  target called hello_world_node 

add_executable(hello_world_node2 hello_world_node.cpp) 

target_link_libraries(hello_world_node2 ${roscpp_LIBRARIES} ${modular_lib_pkg_LIBRAR

Then add the following CMakeLists.txt  and package.xml  files to the new package. Note
that now that we’re using the modular_lib_pkg  just like we’re using the roscpp  package,
we need to find its headers and libraries just like we do with roscpp :

src/modular_node_pkg/CMakeLists.txt

NOTE: Goofy or not, the way that Catkin works, it combines all of your
packages into a single CMake project. This means that each package must
have unique target names. Otherwise the world will implode and unhappiness
will descend upon the land. If you don’t want to have this constraint, you can



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 11/14

<package> 

  <!-- Package Metadata --> 

  <name>modular_node_pkg</name> 

  <maintainer email="you@example.com">Your Name</maintainer> 

  <description> 

    A ROS tutorial on modularity. 

  </description> 

  <version>0.0.0</version> 

  <license>BSD</license> 

 

  <!-- Required by Catkin --> 

  <buildtool_depend>catkin</buildtool_depend> 

 

  <!-- Package Dependencies --> 

  <build_depend>roscpp</build_depend> 

  <build_depend>modular_lib_pkg</build_depend> 

 

  <run_depend>roscpp</run_depend> 

  <run_depend>modular_lib_pkg</run_depend> 

</package>

. 

├── build 

│   └── ... 

├── devel 

│   └── ... 

└── src 

    ├── CMakeLists.txt -> /opt/ros/hydro/share/catkin/cmake/toplevel.cmake 

    ├── modular_lib_pkg 

    │   ├── CMakeLists.txt 

    │   ├── include 

    │   │   └── modular_lib_pkg 

    │   │       └── hello_world.h 

    │   ├── package.xml 

    │   └── src 

    │       ├── hello_world.cpp 

    │       └── hello_world_node.cpp 

    └── modular_node_pkg 

        ├── CMakeLists.txt 

        ├── hello_world_node.cpp 

        └── package.xml 

use catkin_make_isolated which will build each package in isolation, but will be
slower.

src/modular_lib_pkg/package.xml

After creating these files, your workspace should look like the following:

Building the Node (and getting a compiler error again)

If you try to build yor workspace by running catkin_make  at this point, you will get the same
compiler error as before, but this time with the new node!



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 12/14

[100%] Building CXX object modular_node_pkg/CMakeFiles/hello_world_node2.dir/hello_w

/tmp/foo/src/modular_node_pkg/hello_world_node.cpp:5:41: fatal error: modular_lib_pk

compilation terminated. 

catkin_package() 

catkin_package( 

  INCLUDE_DIRS include 

  LIBRARIES hello_world 

Despite the fact that you included ${modular_lib_pkg_INCLUDE_DIRS}  in the
include_directories()  CMake function, it still couldn’t find the header. This is because this

sort of information needs to be exported by the other package.

With the current workspace, not only will ${modular_lib_pkg_INCLUDE_DIRS}  be empty, but
also ${modular_lib_pkg_LIBRARIES}  will also be empty.

Exporting Package Flags to Other Packages
In the previous secion, our second package, modular_node_pkg , was unable to get the
compilation or linker flags from the first package, modular_lib_pkg . This is because the flags
weren’t exported by modular_lib_pkg . With Catkin, exporting such information is done with
the catkin_package()  command in the CMakeLists.txt  file, and in the case of
modular_lib_pkg , we didn’t pass it any arguments:

This function can be left empty if we don’t need to export anything, but if we do, there are
several optional arguments  and the following are most commonly used:

INCLUDE_DIRS  One or more header directories that should be made available to other
packages. These directories are relative to the path of the given CMakeLists.txt  file.
LIBRARIES  One or more libraries that should be made available to other packages. These

are the target names of the libraries.
CATKIN_DEPENDS  One or more names of Catkin packages whose build flags should be

passed transitively to any package which depends on this one. This will cause dependent
packages to automatically call find_package()  on each of these names.
DEPENDS  One or more names of packages whose build flags should be passed

transitively to any package which depends on this one. If a name like foo  is given here,
then Catkin will add whatever the contents of the ${foo_INCLUDE_DIRS}  and
${foo_LIBRARIES}  variables will be exported as part of this package’s include directories

and libraries, respectively.

In our case, we want to export both a local include directory and a library, so we modify the
catkin_package()  call in the modular_lib_pkg  CMakeLists.txt  to export the flags for

our include directory and library.

Additionally, we should declare that anyone depending on this package should also use build
flags from the roscpp  package. This is important either if we link our library against libraries
from the roscpp  package or if any of our exported header files #include  headers from
roscpp .

10



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 13/14

  CATKIN_DEPENDS roscpp 

  )

# Declare the version of the CMake API for forward-compatibility 

cmake_minimum_required(VERSION 2.8) 

 

# Declare the name of the CMake Project 

project(modular_lib_pkg) 

 

# Find and get all the information about the roscpp package 

find_package(roscpp REQUIRED) 

 

# Find Catkin 

find_package(catkin REQUIRED) 

# Declare this project as a catkin package and export the necessary build flags 

catkin_package( 

  INCLUDE_DIRS include 

  LIBRARIES hello_world 

  CATKIN_DEPENDS roscpp 

  ) 

 

# Add the local headers and the headers from roscpp 

include_directories(include ${roscpp_INCLUDE_DIRS}) 

 

# Define a library target called hello_world 

add_library(hello_world src/hello_world.cpp) 

target_link_libraries(hello_world ${roscpp_LIBRARIES}) 

 

# Define an executable target called hello_world_node 

add_executable(hello_world_node src/hello_world_node.cpp) 

target_link_libraries(hello_world_node ${roscpp_LIBRARIES} hello_world)

[ 33%] Building CXX object modular_lib_pkg/CMakeFiles/hello_world.dir/src/hello_worl

Linking CXX shared library /tmp/devel/lib/libhello_world.so 

[ 33%] Built target hello_world 

[ 66%] Building CXX object modular_lib_pkg/CMakeFiles/hello_world_node.dir/src/hello

Linking CXX executable /tmp/devel/lib/modular_lib_pkg/hello_world_node 

[ 66%] Built target hello_world_node 

[100%] Building CXX object modular_node_pkg/CMakeFiles/hello_world_node2.dir/hello_w

Linking CXX executable /tmp/devel/lib/modular_node_pkg/hello_world_node2 

[100%] Built target hello_world_node2 

NOTE: In this specific case, leaving out the CATKIN_DEPENDS on roscpp won’t
cause any problems, but this is only because it is unlikely that someone would
try to build a ROS C++ node without depending on roscpp directly. A motivating
example will be shown in the next section.

The complete CMakeLists.txt  for modular_lib_pkg  is as follows:

src/modular_lib_pkg/CMakeLists.txt

You can now build the workspace again with catkin_make , but this time it should succeed:



25/03/2022, 00:07 Building Modular ROS Packages

https://jbohren.com/articles/modular-ros-packages 14/14

rosrun modular_node_pkg hello_world_node2 

1

2

3

4

5

6

7

8

9

10

And finally, (assuming you still have your workspace environment set up), you can run
hello_world_node2 :

Conclusion
This tutorial has demonstrated some of the basic features of Catkin which enable packags to
share code in a modular way. In future code that you write, you now know how to design your
packages in such a way that makes it easy for your code to be re-used, simply by partitioning
your code between libraries and executables and by declaring the necessary build flags so that
others only need to know your API and the name of your package to depend on it!

references

The Ubuntu Linux Distribution ↩ ↩

The Bourne Again Shell ↩

The C++ Programming Language ↩

The CMake Cross-Platform Buildsystem ↩

The Catkin Build Tool ↩

The VIM Text Editor ↩

The Debian Package Management System ↩

Static, Shared Dynamic and Loadable Linux Libraries ↩

ROS C++ Hello World (The Simplest ROS Tutorial) ↩ ↩  ↩

catkin_package()  API Documentation ↩

 

Except where otherwise noted, content on this site is licensed under a 
Creative Commons Attribution-ShareAlike 3.0 License. 

Privacy Policy

2

2 3

http://www.ubuntu.org/
http://www.gnu.org/software/bash
http://www.stroustrup.com/C++.html
http://www.cmake.org/Wiki/CMake
http://docs.ros.org/api/catkin/html/
http://www.vim.org/
http://www.debian.org/doc/manuals/debian-faq/ch-pkg_basics.en.html
https://web.archive.org/web/20140212200938/http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://jbohren.com/articles/roscpp-hello-world/
http://docs.ros.org/api/catkin/html/dev_guide/generated_cmake_api.html#catkin-package
http://creativecommons.org/licenses/by-sa/3.0/
http://www.jbohren.com/privacy.txt

